Shape and Current Profile Effects on Runaway Electron Confinement

by
V.A. Izzo

with
D.A. Humphreys¹, M. Kornbluth², R.S. Granetz³, D.G. Whyte³, G.J. Olynyk³

¹General Atomics
²Yeshiva University
³Massachusetts Institute of Technology-PSFC

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011
Conclusion

Appearance of post-thermal-quench runaway electrons depends critically on details of MHD fluctuations during the TQ

Part 1) Low-elongation, limited plasmas confine REs better than high-elongation, diverted plasmas

Part 2) In DIII-D diverted plasmas, variation in the target plasma current profile produces variation in TQ MHD, and thereby affects the final RE current amplitude
DIII-D and C-Mod RE Experiments Demonstrate Better RE Confinement in Limited Configuration

- Post-TQ RE current plateau sometimes appears, much more frequently in limited than diverted shots

- Second HXR burst at end of CQ occurs only for limited plasma shapes

For more on DIII-D RE experiments, see N. Eidietis invited talk (VI3.00001), Thursday at 3:00 pm
NIMROD: Inner Wall Limited DIII-D and C-Mod Simulations Show Incomplete Island Overlap

Large stochastic regions for LSN

Discrete n=1 islands for IWL, better RE confinement

Strong qualitative cross-device similarity for both configurations

Conclusion

Appearance of post-thermal-quench runaway electrons depends critically on details of MHD fluctuations during the TQ

Part 1) Low-elongation, limited plasmas confine REs better than high-elongation, diverted plasmas

Part 2) In DIII-D diverted plasmas, variation in the target plasma current profile produces variation in TQ MHD, and thereby affects the final RE current amplitude
Appearance of RE Plateaus for Diverted Plasma Shapes is Very Unreliable on a Shot-to-shot Basis

Hypothesis: Variations in seed RE deconfinement due to MHD produces this shot-to-shot variation in RE plateau current
GATO Linear Stability Analysis Finds Relationship Between n=1 Eigenfunction and RE Plateau Current

Calculate radial profile of unstable n=1 mode after Ar pellet begins to cool plasma edge

Large RE current \rightarrow Off axis peaked n=1 mode (one exception)

Small RE current \rightarrow On-axis peaked n=1 mode (one exception)

Clue that MHD de-confinement is the critical issue

GATO analysis by M. Kornbluth and D.A. Humphreys

V.A. Izzo/APS/November 2011
RE Confinement Calculated Directly by NIMROD Simulations with Test-particle Drift Orbits

- Nonlinear resistive MHD simulation models cooling due to Ar pellet, TQ and CQ phase
- Trace population of RE drift orbits are calculated as the MHD fields evolve

- Curve of confined REs vs. time is obtained in every case; RE losses highly variable
- RE loss rate is computed as: $(dN_{RE}/dt)/N_{RE}$ (inverse of confinement time)
NIMROD Predicted RE Loss Rates Consistent with Experiment (with One Exception)

Cases with $I_{RE} > 100$ kA show expected trend vs. predicted loss rate

$$\log(I_{RE}) = \left[\log(I_{seed}) + \gamma_A \tau_{CQ}\right] - \gamma_{RE} \tau_{loss}$$

Cases with predicted loss rate > 4×10^4/s have negligible RE current

Single outlier: 137624

Also outlier in GATO analysis
Four Simulations with $q_0<1$ All Have Same Qualitative MHD Behavior

Solid curves have $q_0<1$

$\partial B_{n=1}/B$ vs. time

Amplitudes of $n=1$ vs. time have same qualitative trend, variations only in timing, peak amplitude

Radial profile of $\partial B_{n=1}/B$

Radial profile of saturated $n=1$ mode is nearly identical in every $q_0<1$ case
Expected Correspondence Between n=1 Mode Amplitude, Confinement for $q_0<1$

Relationship between saturated mode amplitude and RE loss rate is predicted by Rechester-Rosenbluth model for electron heat transport on stochastic fields:

$$D_{RE} \sim \left(\frac{1}{\tau_{RE}} \right) \sim \left(\frac{\partial B}{B} \right)^2$$

Fluctuating field amplitude correlates (0.93) with value of q_{95}, shows no clear systematic trend for any other current profile parameter considered.
Comment on ITER Implications

Two important time scales happen to be comparable in DIII-D...

but they may not scale the same

\[\tau_{\text{loss}} \sim 0.1 \text{ ms} \]

\[\tau_{\text{RE}} \sim 0.1 \text{ ms} \]

\[\tau_{\text{loss}} \]

Time interval during which REs are lost.

Related to “re-healing” of flux surfaces after mode saturation.

\[\tau_{\text{RE}} \]

RE confinement time when fields are stochastic.

Depends on saturated mode amplitude and machine size.

“Marginal confinement regime” may explain shot-to-shot non-reliability in DIII-D, but how do these times scale relative to each other? Do current profile details matter in the case of ITER?
Conclusion

Appearance of post-thermal-quench runaway electrons depends critically on details of MHD fluctuations during the TQ

Part 1) Low-elongation, limited plasmas confine REs better than high-elongation, diverted plasmas
 → Supported by evidence from both experiment and simulation for both DIII-D and C-Mod

Part 2) In DIII-D diverted plasmas, variation in the target plasma current profile produces variation in TQ MHD, and thereby affects the final RE current amplitude
 → NIMROD successfully predicts the shot-to-shot variation in RE loss rates for all but one case, but relationship to equilibrium current profile is more complex than a single parameter (e.g. q_{95} is important, but only for $q_0<1$)