Operating ITER Robustly without Disruptions

by D.A. Humphreys¹,

with

N.W. Eidietis¹, A.W. Hyatt¹, J.A. Leuer¹, T.C. Luce¹, E.J. Strait¹, M.L. Walker¹, A.S. Welander¹, J.C. Wesley¹, A. Winter², Yu. Gribov², L. LoDestro³, L.D. Pearlstein³

¹General Atomics ²ITER IO ³Lawrence Livermore National Laboratory

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011

SAN DIEGO

Operating ITER Robustly without Disruptions

T. Todd, in R. Dendy Plasma Physics p. 448 (1993)

It's all about the control

It's all about the control

Focused effort on control has the potential for enabling disruption-free operation in ITER (or nearly...)

Disruptions are Plasma-Terminating Events that Result from Uncontrolled Instability Growth

- Examples of instabilities that can grow and cause disruption:
 - Vertical instability
 - Tearing mode

• Vertical Displacement Event (VDE): loss of vertical control leads to global MHD instability and thermal quench

 Major Disruption: absence of profile control allows unstable profiles to evolve, triggering global MHD instability and thermal quench

Intentional VDE in DIII-D

Success of ITER Requires Sufficiently Low Disruption Rate

- Mid-pulse disruptions eliminate planned discharge time following disruption, reducing physics productivity
- Disruptions may require long recovery time, reducing overall shot frequency
- Disruption heat fluxes can reduce component lifetime (e.g. divertor target ablation)
- Damage to in-vessel components can require shutdown for repair

80% availability (during operation periods)

Design target: <10% disruptivity

Disruptions are a Result of Insufficient Controllability of Operating Regime and Associated Instabilities

Improved Control Leads to Reduced Disruption Rate

- JET disruptivity analysis [deVries, 2009]
 - "...lower disruption rates [over time]...
 primarily due to improvement in technical ability to operate JET"
- DIII-D steady-state scenario disruption rate analysis 1997-2009
 - Experience, improved control reduce per-shot disruptivity from ~15% to <5%
- ECCD at rational surface controls NTM
 - Replaces missing bootstrap current
 - Prevents disruption
- Improved vertical control prevents VDE
 - Routinely robust in operating devices
 - High confidence extrapolation to ITER design

Integrated Control Research is Required In Order to Operate ITER Robustly Without Disruptions

Identify robust operating scenarios

- Passively stable
- Actively controllable
- Demonstration on operating machines

• Develop robust controllability for scenarios

- Validated models of instabilities, actuators, plasma
- Quantified controllability with noise, disturbances
- Real-time monitoring of controllability boundaries
- Develop provable algorithms to avoid or recover from impending fault trajectories
 - Prediction with Faster Than Real-Time simulation
 - Algorithms for off-normal responses
 - Soft shutdown if required
 - Hard shutdown (mitigated disruption effects) as rare last resort

Integrated Control Research is Required In Order to Operate ITER Robustly Without Disruptions

Identify robust operating scenarios

- Passively stable
- Actively controllable
- Demonstration on operating machines

Corresponding Research Needs Workshop Thrusts

ReNeW Thrust 8 (~Scenarios in burning plasmas)

• Develop robust controllability for scenarios

- Validated models of instabilities, actuators, plasma
- Quantified controllability with noise, disturbances
- Real-time monitoring of controllability boundaries

• Develop provable algorithms to avoid or recover from impending fault trajectories

- Prediction with Faster Than Real-Time simulation
- Algorithms for off-normal responses
- Soft shutdown if required
- Hard shutdown (mitigated disruption effects) as rare last resort

ReNeW Thrust 5 (~Disruption-free control)

ReNeW Thrust 2 (~Control transient events)

How Do We Know Robust Control Approach Works? High Reliability Aircraft Design Works...

- Commercial aircraft achieve very high reliability and performance
- Military aircraft achieve extreme robustness near operating limits using modern control methods

 ITER has similar levels of control complexity and requirements on reliability and performance

10³ sensors, 10² controlled parameters, ~10 key instabilities, 10² actuators

How Do We Know Robust Control Approach Works? High Reliability Aircraft Design Works...

- Commercial aircraft achieve very high reliability and performance
- Military aircraft achieve extreme robustness near operating limits using modern control methods

 ITER has similar levels of control complexity and requirements on reliability and performance

10³ sensors, 10² controlled parameters, ~10 key instabilities, 10² actuators

Robust Control Requires Systematic Analysis: Control Operating Space

- Plot of controllability in ITER operating space
 - Trajectory in (I_i, β_P) space as discharge evolves
 - Vertical growth rate indicates controllability required
 - Ensuring sufficient controllability ensures NO LOSS OF CONTROL

Control Operating Space Can Quantify Need for More Control Capability for Greater Robustness

ITER Vertical Control System Includes Mix of Superconducting and Copper Coils

Robust Control Metric for Vertical Disturbance Rejection: ΔZ_{MAX}

 All disturbances result in sudden jump in vertical position Z_P

 ∆Z_{MAX} = maximum ∆Z_P beyond which motion can't be reversed with saturated voltage

 Normalizing by minor radius produces machine-independent metric ΔZ_{MAX}/a

> VS1: $\Delta Z_{MAX}/a \sim 2\%$ VS3: $\Delta Z_{MAX}/a \sim 9\%$

Good controllability metrics relate

- Physics characteristics of instability
- Actuator capabilities
- Machine/configuration constraints
- Cost drivers

$$\Delta Z_{MAX} \approx \frac{\left(\frac{\partial B_R}{\partial I_C} \frac{R_0}{n B_{Z0}} \Delta I_{MAX}\right) e^{-\gamma \left(T_{PS} + \tau_w\right)}}{\left(1 + \gamma \frac{L_C}{V_{SAT}} \Delta I_{MAX}\right)}$$

• Good controllability metrics relate

- Physics characteristics of instability
- Actuator capabilities
- Machine/configuration constraints
- Cost drivers

• Good controllability metrics relate

- Physics characteristics of instability
- Actuator capabilities
- Machine/configuration constraints
- Cost drivers

Control Operating Space for $\triangle Z_{MAX}$ Performance in ITER Shows VS3 Coils Provide Robustness to Disturbances

Experiments Are Essential in Characterizing Control Disturbances

- Typical disturbances that set controllability limits
 - ELM's
 - H-L transitions (less so for L-H)
 - Loss of Internal Transport Barrier (ITB)
 - NTM/Locked Modes

- Limited predictive theories for effect of complex transient phenomena on equilibrium
 - Empirical ELM model: $\Delta I_i \sim +0.05$, $\Delta \beta_p \sim -0.05$
 - Control analysis can be forgiving, but extra design margin = cost, so accuracy in disturbance models is important...

ITER Scenario ELM Disturbance Experiments in DIII-D Show ΔZ_{MAX} is Good Predictor for ELM Controllability

• Experiment

- ELMy H-mode ITER baseline scenario in DIII-D
- ΔZ_{MAX} varied by varying vertical control maximum voltage

Results

- ELM's in discharges with high ΔZ_{MAX} were well-controlled
- Discharge with ΔZ_{MAX} near predicted marginal value produced VDE
- ΔZ_{MAX} is a good predictor for uncontrollable ELM perturbation

Summary

- Disruptions are the result of insufficient control capability
 - Consequence of design choices
 - Hardware/system faults
 - Human error or human intention
- Focused efforts on robust control hold the promise of reducing ITER disruptivity to well below present design requirements (caveat: what cost trade-offs and design choices must ITER make?)
- Recent theoretical and experimental studies of ITER vertical controllability provide examples of the robust control analysis/design approach
 - Analytic formulation of maximum controllable displacement
 - Quantified control operating space for ITER
 - Assessment of ELM disturbances in ITER baseline scenario simulated in DIII-D

