High q_{min} Steady State Scenario Development Using Off-axis Neutral Beam Injection on DIII-D

by

C.T. Holcomb¹

with

J.R. Ferron², F. Turco³, T.C. Luce², P.A. Politzer², M.J. Lanctot¹, M. Okabayashi⁴, Y. In⁵, J.M. Hanson³, C.M. Muscatello⁶, W.W. Heidbrink⁶, T.W. Petrie², R.J. La Haye², A.W. Hyatt², T.H. Osborne², L. Zeng⁷, E.J. Doyle⁷, T.L. Rhodes⁷, A.M. Garofalo², J.D. King¹, M.A. Makowski¹, J.M. Park⁸, M.A. Van Zeeland²

¹Lawrence Livermore National Laboratory ²General Atomics ³Columbia University ⁴Princeton Plasma Physics Laboratory ⁵Far Tech, Inc. ⁶Univiersity of California, Irvine ⁷University of California, Los Angeles ⁸Oak Ridge National Laboratory

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011

113-11/CTH/rs

Summary: New Off-Axis NBI Used to Explore the Steady-State Potential of Plasmas With $q_{min}>2$

- With off-axis NBI & additional ECH, it is now possible to sustain q_{min} > 2 at high β_{N}
- Plasmas with off-axis NBI have broader current and pressure profiles $(\rho_{qmin} \approx 0.5, \text{ and } P(0)/\langle P \rangle < 3)$
- Achieved $\beta_N \approx 3.2$ limited by transport, not stability
- The computed n=1 ideal-wall β_N limits are higher than in similar plasmas without off-axis NBI
- Current evolution with Off-axis NBI is consistent with neoclassical Ohm's Law and standard current drive models

Motivation: A Steady-State Tokamak Scenario With q_{min} >2 Offers Many Attractive Features

- Avoid 2/1 and 3/2 tearing modes that can limit β_N
- Bootstrap current $\propto q\beta_N$
- Small or negative magnetic shear can reduce transport
- High pressure limits are predicted with broad current and pressure profiles at q_{min} >2

Long History of Modeling Showing Broad Current Profiles and Broad Pressure Profiles Raise the Ideal-Wall Stability

Experiment With Off-Axis NBI & More ECCD Power Easily Sustained $q_{min} \approx 2.4$ at Larger ρ_{qmin} & Broader Pressure

Time Averaged Pressure, Safety Factor, and Current Profiles in β_N Flattop Are Broader With Off-Axis NBI

Shots 136835, 3-3.8 s ,144476, 3.2-4.1 s

Achieved β_N =3.2 Limited By Transport, Not Stability

SAN DIEGO

113-11/CTH/rs

Lower τ_E May be Caused by Putting More Power Off-Axis Without Changing Thermal Conductivity Very Much

Calculated Ideal Wall n=1 Kink Mode β_N Limits Have Been Increased by Broadening Profiles Using the Off-Axis NBI

Reconstructed J(ρ) is Consistent With Neoclassical Current Drive for $\rho > 0.2$

Summary of Steady-State Scenario Development Using Off-Axis NBI on DIII-D in 2011:

- With off-axis NBI and additional ECH, it is now possible to sustain q_{min} > 2 at high β_N
- Plasmas with off-axis NBI have broader current and pressure profiles $(\rho_{qmin} \approx 0.5, \text{ and } P(0)/\langle P \rangle < 3)$
- Achieved $\beta_N \approx 3.2$ limited by transport, not stability
- The computed n=1 ideal-wall β_N limits are higher than in similar plasmas without off-axis NBI
- Current evolution with Off-axis NBI is consistent with neoclassical Ohm's Law and standard current drive models

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under DE-AC52-07NA27344 and General Atomics under DE-FC02-04ER54698 See J. Ferron's Poster on Thursday & F. Turco's Invited Talk on Friday

