Overview of Recent DIII-D Experimental Results

by
P. Gohil

For the DIII-D team

Presented at the 53rd APS Meeting of the APS Division of Plasma Physics
Salt Lake City, Utah

November 14-18, 2011
DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

ITER Research

Advanced Steady-State

Increased Scientific Understanding

DEMO

DIII-D

P. Gohil/APS/November 2011
DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

ITER Research

Advanced Steady-State

Increased Scientific Understanding

DIII-D

DEMO
ITER Operational Scenarios: Achieved Stationary Conditions in Long Pulse ITER Baseline Discharges at Low Torque

- ITER shape
- ITER-like torque in steady state
- Broad EC Deposition near q=3/2
ELM Suppression Demonstrated in ITER Baseline Scenario

- ITER Shape, $q_{95} = 3.15$
- $\beta_N = 1.8$, $H_{89} = 1.8$
- Sustained for >1 s
 - Duration limited by available EC duration
- Achieved with single row $n=3$ I-coil RMP
- “ELMs” during $n=3$ associated with internal $n=1/m=1$ activity
Island-Like Displacements Observed During n=3 RMP Toroidal Phase Shifts

- Toroidal phase of n=3 RMP switched by 60° every 200 ms
- Thomson scattering density contours separate only in 0° phase
 - Suggestive of island formation
 - Localized near top of pedestal
- Similar structures seen for electron temperature

\[\text{positive coil current = 0° phasing} \]
\[\text{negative current = 60° phasing} \]
Nonresonant n=3 Magnetic Field Provides Additional Torque Maintaining Edge Rotational Shear for QH-mode

- QH-mode produced with reactor relevant level of co-\(I_p\) NBI torque
- Counter-rotation with co-\(I_p\) NBI torque

![Graph showing density, divertor flux, and NBI torque over time.]

Burrell, Friday 9:30
Garofalo, Thursday AM Posters
Nonresonant n=3 Magnetic Field Provides Additional Torque Maintaining Edge Rotational Shear for QH-mode

- With co-I_p NBI torque, toroidal rotation is co-I_p and edge rotational shear is small.

- For similar co-I_p NBI torque, adding n=3 field maintains counter-I_p rotation and larger edge rotational shear.

- Comparison made at similar density and NBI torque.

[Graph showing comparison of rotational shear with and without magnetic torque]
First Demonstration of ELM Pacing with 60 Hz Pellets: Substantial Reduction in ELM Size

- ELM pellet pacing at 5x the natural ELM frequency
- ITER shape, $\beta_N = 1.8$
- No significant change in energy confinement
High Resolution Data from Upgraded Thomson System Enables Detailed Studies of Pedestal Evolution

- Detailed profile evolution between ELMs
- Allows good comparisons with models

The EPED model predicts the observed evolution in the pressure gradient and the limit at the ELM crash

Snyder, Monday 4:00
Groebner, This Session
Disruptions: Runaway Electron Beam Control Allows for Safe Dissipation of Beam Energy

- RE beam position held stable with control system
- RE beam current can be ramped down with ohmic coil
- RE beam current can be dissipated by injection of high-Z gas
DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

Advanced Steady-State

ITER Research

Increased Scientific Understanding

ITER

DIII-D

DEMO
DIII-D Neutral Beam Modified for Off-Axis Injection Provides up to 5 MW Heating for Support of Physics and AT Goals

Measured Fast Ion CXR Emission

Measured Difference in NBCD Agrees with Classical Model

M. VanZeeland, J.M. Park, This Session
Off-Axis NBI Produces Broad Current & Pressure Profiles with Sustained $q_{\text{min}}>2$ for Higher β_N Stability Limits

- $q_{\text{min}}>2$ avoids 2/1 tearing modes
- Achieved $\beta_N=3.2$ limited by transport – needs further study
- Plasmas produced using off-axis NBI have higher predicted ideal-wall stability limits ($\beta_N \sim 4$)

Holcomb, This Session
Ferron, Thursday AM Poster
Turco, Friday 11:00
DIII-D Research is Advancing the Physics Basis for Fusion Energy Production

ITER Research
Advanced Steady-State
DEMO
Increased Scientific Understanding

P. Gohil/APS/November 2011

DIII-D

ITER

National Fusion Facility
L-H Transition: High-resolution Measurements Demonstrate Turbulence-zonal Flow Dynamics Approaching Transition

- Limit-cycle oscillations between L & H-mode show interplay between zonal flow (predator) and turbulence (prey)

- Poloidal velocity spectra (from BES) evolves from geodesic acoustic mode (GAM) dominated to zonal flow dominated close to transition

- Zonal flow measured by fast reynolds stress probe increases just prior to transition
Enhanced Diagnostics Reveal New Physics Insights

- New measurement of C^{2+} flows
- Strong flows towards inner and outer strikes points due to drag by main ion flows (Weber this session)

- Fitting thermal D_α emission spectra
- Differences in v_ϕ between main ions, carbon and neoclassical predictions (Grierson Wed. 11:30)
Assessed the Effect of Divertor Geometry on Divertor Conditions

Preliminary results for H-mode plasmas:

- $\uparrow L_\parallel \rightarrow \uparrow n_{\text{osp}} \& \downarrow T_{\text{osp}}$ — as expected

 (L_\parallel = parallel connection length)
Assessed the Effect of Divertor Geometry on Divertor Conditions

Preliminary results for H-mode plasmas:

- \(\uparrow L_{\parallel} \rightarrow \uparrow n_{\text{osp}} \) & \(\downarrow T_{\text{osp}} \) — as expected

 \(L_{\parallel} \) = parallel connection length

- \(\uparrow R_{\text{osp}} \rightarrow \downarrow n_{\text{osp}} \) & \(\uparrow T_{\text{osp}} \) — against expectation

 - neutral trapping plays a critical role

 (preliminary SOLPS analysis)
Talks in this Session Present DIII-D Research Supporting ITER, Steady-State High Performance and Fusion Plasmas

Providing solutions to key ITER issues
- R. Groebner
 GO4.05: Testing Pedestal Models for Joint Research Target on DIII-D
- L. Zeng
 GO4.07: Effects of Resonant Magnetic Field Perturbations on Density Profiles, Particle Transport, and Turbulence in DIII-D
- J. Callen
 GO4.08: RMP Effects on Pedestal Structure and ELMs
- P. Stangeby
 GO4.09: The relation between upstream radial widths of n_e and T_e and outer target power width for H-mode discharges in DIII-D
- T. Weber
 GO4.10: C^2+ Flow Measurement in DIII-D Using Coherence Imaging Spectro-Polarimetry
- J. Wesley
 GO4.14: Attributes of argon pellet fast shutdowns in DIII-D

Developing physics basis for steady-state operation
- M. Van Zeeland
 GO4.02: Initial Off-Axis Neutral Beam Checkout and Physics Experiments on DIII-D
- J.M. Park
 GO4.03: Off-Axis NBCD Experiments in DIII-D
- C. Holcomb
 GO4.04: High q_{min} Steady State Scenario Development Using Off-axis Neutral Beam Injection on DIII-D
- W. Solomon
 GO4.15: Advanced Inductive Plasmas with Low Torque Startup

Advancing fundamental understanding of fusion plasmas
- Z. Yan
 GO4.06: The Dynamics of Turbulence and Shear Flow Approaching the L-H Transition
- R. Pinsker
 GO4.11: Comparison of 3-D Modeling with Experimental Results on Fast Wave Antenna Loading in DIII-D
- G. Kramer
 GO4.12: Simulation of Observed EGAM Induced Beam-ion Losses in DIII-D
- J. Hanson
 GO4.13: Measuring Kinetic Contributions to Resistive Wall Mode Stability Using Active MHD Spectroscopy
DIII-D Program Much More Extensive Than Can Be Described Here – See Invited and ITER Talks Plus Two Poster Sessions

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed.</td>
<td>9:42</td>
<td>Wade</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:18</td>
<td>Murakami</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:42</td>
<td>Izzo</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:54</td>
<td>Humphreys</td>
</tr>
<tr>
<td>Wed.</td>
<td>12:18</td>
<td>Austin</td>
</tr>
<tr>
<td>Mon.</td>
<td>2:00</td>
<td>Thomas</td>
</tr>
<tr>
<td>Mon.</td>
<td>2:30</td>
<td>Mordijck</td>
</tr>
<tr>
<td>Mon.</td>
<td>4:00</td>
<td>Snyder</td>
</tr>
<tr>
<td>Tue.</td>
<td>2:30</td>
<td>Ferraro</td>
</tr>
<tr>
<td>Tue.</td>
<td>4:00</td>
<td>Buttery</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:30</td>
<td>Grierson</td>
</tr>
<tr>
<td>Wed.</td>
<td>2:30</td>
<td>L. Schmitz</td>
</tr>
<tr>
<td>Wed.</td>
<td>4:00</td>
<td>Makowski</td>
</tr>
<tr>
<td>Thurs.</td>
<td>3:00</td>
<td>Eidietis</td>
</tr>
<tr>
<td>Fri.</td>
<td>9:30</td>
<td>Burrell</td>
</tr>
<tr>
<td>Fri.</td>
<td>11:00</td>
<td>Turco</td>
</tr>
</tbody>
</table>

Invited & Tutorial

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed.</td>
<td>11:30</td>
<td>Wade</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:42</td>
<td>Murakami</td>
</tr>
<tr>
<td>Wed.</td>
<td>11:54</td>
<td>Humphreys</td>
</tr>
<tr>
<td>Wed.</td>
<td>12:18</td>
<td>Austin</td>
</tr>
</tbody>
</table>

DIII-D Poster Sessions: Thursday Morning and Thursday Afternoon