Off-axis Neutral Beam Injection as a Tool for Expanding the Operating Space of DIII-D High f_{NI} Discharges,* J.R. Ferron, T.C. Luce, P.A. Politzer, J.C. DeBoo, R.J. La Haye, GA; C.T. Holcomb, M.J. Lanctot, LLNL; F. Turco, ORAU; J.M. Park, ORNL; Y. In Far-Tech; M. Okabayashi, PPPL – The newly installed capability for 5 MW off-axis neutral beam injection is being utilized to broaden the pressure and current density profiles and raise the minimum q value in DIII-D discharges with noninductive current fraction f_{NI} near 1. Broader pressure is expected to allow stable access to increased β_N and increase the bootstrap current density J_{BS} off-axis. Reducing the on-axis current drive allows access to higher q_{min}, increasing the on-axis J_{BS} and improving tearing mode stability. This is a path toward DIII-D (and a steady-state powerplant) f_{NI}=1 discharges at q_{95} = 5, which require $\beta_N \geq 4$. Initial experiments have demonstrated q_{min} maintained above 2 with broader pressure profiles than previously observed. Analysis of the noninductive current profiles and high β_N stability of discharges with off-axis beam injection will be presented.

*Work supported in part by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100, DE-AC05-00OR22725, DE-FG02-08ER85195, DE-AC02-09CH11466.