Calculation of Linear Two-Fluid Plasma Response to Applied Non-Axisymmetric Fields

by N.M. Ferraro General Atomics

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics Salt Lake City, UT

November 14–18, 2011

3D Fields Significantly Affect Tokamak Performance

- Edge-localized modes
 - Mitigate/suppress ELMs in H-mode
- Transport
 - Density pump-out
- Drive/brake rotation
 - Affects RWM stability
 - Affects tearing mode stability (Buttery talk this session)
 - Allow access QH-mode without NBI (Burrell talk Friday)

Evans, et al. Phys. Plasmas 13 (2006)

A Predictive Capability Requires Understanding Plasma Response

- Predictive capability is challenging because plasma response is complicated
 - Plasma may strongly enhance/suppress spectral components of applied field
 - New fields affect transport and rotation
 - Rotation strongly affects plasma response
- New tools are being developed and applied to gain predictive understanding (M3D-C1)

Our Models of Plasma Response Are Evolving

"Vacuum" Fields (TRIP3D)

- Plasma does not respond to applied fields
- Tells us degree to which applied fields are "resonant"
- Doesn't tell us dependence on plasma parameters

• Ideal (IPEC, MARS-F, VMEC)

- Plasma responds such that magnetic surfaces remain intact → no islands
- Tells us how strongly ideal modes respond to applied fields
- Doesn't explain dependence of plasma response on rotation; doesn't directly determine island size

Our Models of Plasma Response Are Evolving

- Resistive, Single-Fluid (MARS-F, JOREK)
 - Describes tearing response \rightarrow islands
 - Tells us how response depends on plasma parameters, especially **rotation**
 - When is response more like ideal? When is it more like vacuum? Does it smoothly transition between the two?
- Two-fluid & "Extended" MHD (M3D-C1, NIMROD)
 - Ion rotation (Ω) and electron rotation (Ω^e) are distinct
 - FLR effects, NTV, etc.

I GENERAL ATOMICS

Outline

- Basics of 3D response
- Introduction to M3D-C1
- Linear single-fluid results
 - Rotation has strong effect on plasma response
- Linear two-fluid results
 - Electron rotation screens core islands
 - Sheared ion rotation affects edge
- Linear vs. nonlinear
 - Nonlinear calculations are required for some phenomena

"Vacuum" Model Tells Us a Lot

- Plot shows Fourier spectrum of B_n
- B_n = component of applied field normal to equilibrium magnetic surfaces n=3, Even Parity, Vacuum
- Resonant components (along dashed line) cause islands
- Non-resonant components cause bending of surfaces
- Poloidal spectrum of B_n depends on Ψ

ERAL ATOMICS

Plasma Response Modifies Spectrum

- Ideal response → no islands → reduction in resonant components
- Excited ideal modes
 → enhancement of non-resonant components

Plasma Can Kink and Screen

M3D-C1 Can Calculate Two-Fluid Response

- M3D-C1 is a two-fluid resistive finite element code
 - Shares some design principles with M3D
 - (R,Z) coordinates (not spectral in poloidal angle)
- Computational domain includes plasma, separatrix, and open field-line region

M3D-C1 Can Calculate Two-Fluid Response

- M3D-C1 is a two-fluid resistive finite element code
 - Shares some design principles with M3D
 - (R,Z) coordinates (not spectral in poloidal angle)
- Computational domain includes plasma, separatrix, and open field-line region
- Unstructured mesh allows resolution packing at rational surfaces
- Both linear and nonlinear models are implemented

ENERAL ATO

Two-Fluid Model Implemented in M3D-C1

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0 \qquad \mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{J} + \frac{d_i}{n} (\mathbf{J} \times \mathbf{B} - \nabla p_e)$$

$$n\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi \qquad \Pi = -\mu \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right]$$

$$\frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p = -\Gamma p \nabla \cdot \mathbf{u} - \frac{d_i}{n} \mathbf{J} \cdot \left(\Gamma p_e \frac{\nabla n}{n} - \nabla p_e\right) \qquad \mathbf{q} = -\kappa \nabla \left(\frac{p}{n}\right) - \kappa_{\parallel} \mathbf{b} \mathbf{b} \cdot \nabla \left(\frac{p_e}{n}\right)$$

$$-(\Gamma - 1) \nabla \cdot \mathbf{q} \qquad \Gamma = 5/3$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \qquad p_e = p/2$$

- Complete (not reduced) two-fluid model is implemented
- Time-independent equations may be solved directly for linear response

Analysis Considers Reconstructed DIII-D Equilibria

 Vacuum fields generated by DIII-D I-coils

Boundary conditions

- Vacuum B_n is held constant at the boundary
- No-slip (v=0)
- Realistic transport
 parameters

– Lundquist number ~10⁹

- Toroidal rotation
 - Rotation is added selfconsistently: $p \neq p(\Psi)$

💠 GENERAL ATOMICS

Single-Fluid Result — Rotation (Usually) Improves Screening

- Plasma may enhance resonant fields at low rotation
- Large rotation screens resonant fields
- Response depends on beta

Tearing of 3/1 and 2/1 Surfaces is Driven by External Fields, But Suppressed by Rotation

n=1

Why is Plasma Response Sensitive to Rotation? Why is it Sensitive to Beta?

- From a (rotating) plasma's perspective, the static external fields are oscillating
 - If field is oscillating faster than tearing response, plasma won't tear
- Rotation drives static tearing modes away from marginal stability
- Higher beta moves modes closer to marginal stability
 - At marginal stability, an infinitesimal perturbation yields an infinite response

Single-Fluid Result — Rotation Shear Increases Edge Response

• Large rotation shear seems to increase edge response

 Why? Theory predicts Ω' is destabilizing to low-n peeling-ballooning modes*

*Snyder, et al., Nucl. Fusion **47** (2007); Aiba, et al., Nucl. Fusion **50** (2010); Ferraro, et al., Phys. Plasmas **17** (2010)

Rotation Improves Core Screening; But Sheared Rotation Stochasticizes Edge

N.W. Ferraro/APS/November 2011

🔶 GENERAL ATOMICS

Two-Fluid Results

Two-Fluid Results — Ion and Electron Rotations are Distinct

Given Ω, we can change Ω^e=Ω+ω_{*} by adjusting ω_{*}=d_i p'/n

Two-Fluid Effects Shift Resonance

(Mass) rotation at q=3Total Resonant Field (G/kA) 6 6 0.00 mm .75 mm Typical in DIII-D mm .50 mm 4 4 2 2 vacuum 0 \cap 10.0 1000.0 100.0 10.0 1.0 0.1 0.1 1.0 100.0 1000.0 counter Ω (krad/s)

• Strongest tearing no longer occurs at $\Omega = 0$

 Screening of q=3 island clearly depends more on Ω^e than Ω

What is "Perpendicular" Electron Velocity?

• The perpendicular angular velocity is defined as

$$\mathbf{\Omega}_{\perp}^{e,i} = \frac{\mathbf{v}^{e,i}}{R} \cdot \frac{\mathbf{B} \times \nabla \psi}{|\mathbf{B} \times \nabla \psi|}$$

• To lowest order, $\mathbf{v}^{e,i} = R^2 \omega^{e,i}(\psi) \nabla \varphi + \lambda^{e,i} \mathbf{B}$. Thus:

$$\Omega_{\perp}^{e,i} = \frac{\left|\nabla\psi \times \nabla\varphi\right|}{|B|} \omega^{e,i}(\psi)$$

- From radial force balance: $\omega^{e,i}(\psi) = \phi'(\psi) + \frac{p_{e,i}'(\psi)}{n_{e,i}q_{e,i}}$
- Ω^e_⊥ vanishes wherever ω^e vanishes, but also at B_{pol} nulls

Edge Response Depends on Mass Rotation Shear

 Tearing of edge modes is dependent on ion, not electron, rotation shear

Linear vs. Nonlinear

Is Linear Response Appropriate?

- For typical experimental parameters, linear response may not be strictly valid in some regions
 - Large current density near rational surfaces
 - Back-reaction on rotation is important

- "Displacement" shows overlapping surfaces near separatrix!
- Quantitative predictions of island size, stochasticity from linear calculations are suspect

5 kAt even-parity I-Coil

Linear Response Gets Some Things Right

- Which modes are most sensitive
- How parameters (rotation, viscosity, etc.) affect sensitivity
- How to optimize coil design

Calculated resonant field (proxy for resonant torque)

Empirical phase least prone to locking

💠 GENERAL ATOMICS

Nonlinear Calculations are Underway

- Nonlinear calculations are necessary for some things
 - Rotation/locking
 - Transport
 - Large islands
- Preliminary nonlinear results agree with linear results for nonrotating plasma

Summary

- We can calculate resistive two-fluid plasma response for diverted equilibria with realistic transport parameters
- Rotation (usually) improves screening
- Perpendicular electron velocity is the most relevant rotation for core islands
 - ELM suppression may correlate with intersection of $\omega^e \approx 0$ and rational surface (q_{95} windows?)
- (Mass) rotation seems to enhance edge response
 - Edge rotation may be crucial to ELM suppression (depending on mechanism)

Challenges to Understanding Plasma Response Remain

- Mode locking depends sensitively on scaling of viscous torques
- ELM suppression requires interplay between field response and transport (probably)
- Need better understanding of transport in 3D fields
- 3D equilibrium properly requires nonlinear calculation
 - n = 0 rotation and $n \neq 0$ response are strongly coupled
 - Island saturation is nonlinear
 - There is healthy debate how to do this efficiently!
- We are moving quickly to overcome these challenges

