RMP Effects on Pedestal Structure and ELMs

by

J.D. Callen¹

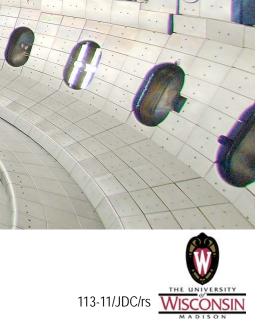
with

A.J. Cole¹, C.C. Hegna¹, S. Mordijck²,

R.A. Moyer³

¹University of Wisconsin

²College of William & Mary


³University of California-San Diego

Presented at the 53rd Annual Meeting of the APS Division of Plasma Physics,

Salt Lake City, Utah

November 14-18, 2011

Issue to be Addressed

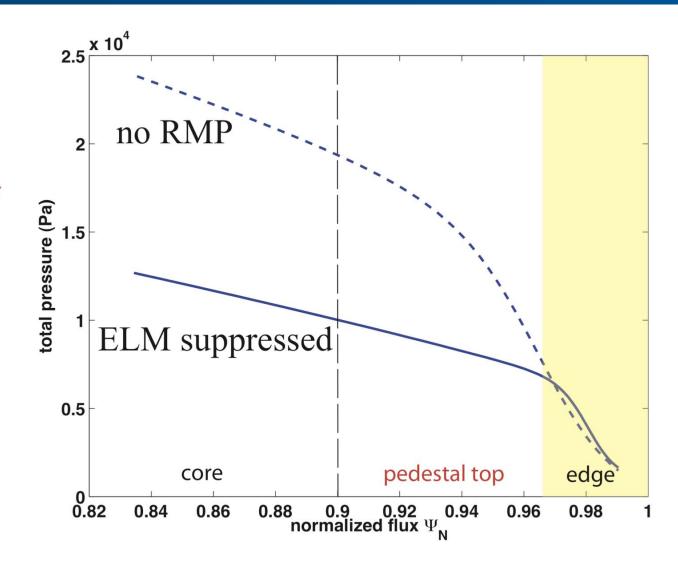
 If flow screening of resonant magnetic perturbations (RMPs) prevents island and stochasticity, how do RMPs suppress ELMs?

Theses

- Reduction of $|\vec{\nabla}P|$ at top of pedestal is key
- RMPs reduce $|\vec{\nabla} T_e|$ more than $|\vec{\nabla} n_e|$ at pedestal top
- Reductions are proportional to I_{coil}^2
- RMP-induced "magnetic flutter" transport might do this

RMPs Reduce Pressure Gradient at Pedestal Top

• RMP-induced $|\vec{\nabla}P|$ reductions are:


small in core,

largest at top of the pedestal, and

small (increase) at the edge.

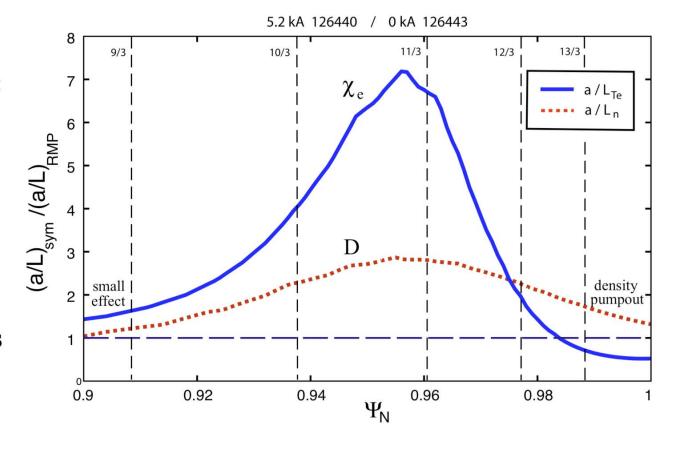
• Key transport issue for ELM suppression is:

What causes the reduced $|\vec{\nabla}P|$ at pedestal top?

RMPs Decrease $I_{e'}$ n_{e} Gradients at Pedestal Top

• Ratio of T_e , n_e gradients wo (sym) to with RMPs indicate increases in χ_e , D:

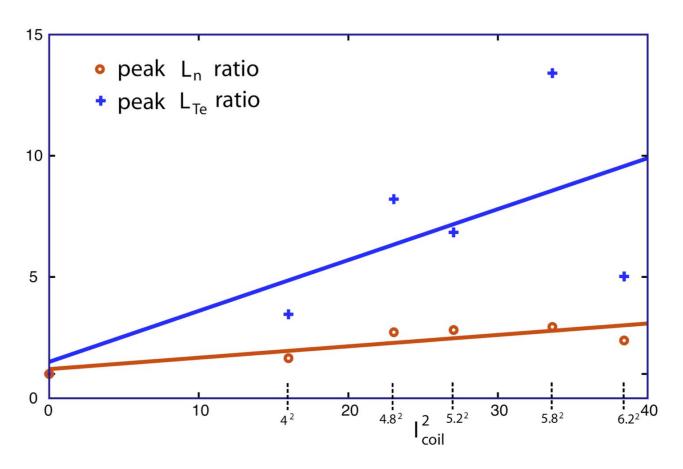
$$rac{|ec{
abla}T_e|_{ ext{sym}}}{|ec{
abla}T_e|_{ ext{RMP}}} = rac{[a/L_{Te}]_{ ext{sym}}}{[a/L_{Te}]_{ ext{RMP}}} \simeq rac{\chi_e^{ ext{sym}} + \chi_e^{ ext{RMP}}}{\chi_e^{ ext{sym}}};$$


similarly for D^{RMP} .

• RMPs increase:

$$\chi_e ext{ by } \lesssim imes 7,$$

$$D$$
 by $\lesssim \times 3$.


• Peak change is at $\Psi_N \sim 0.95$.

Peak of RMP-Induced Extra Transport $\propto I_{\text{coil}}^2$

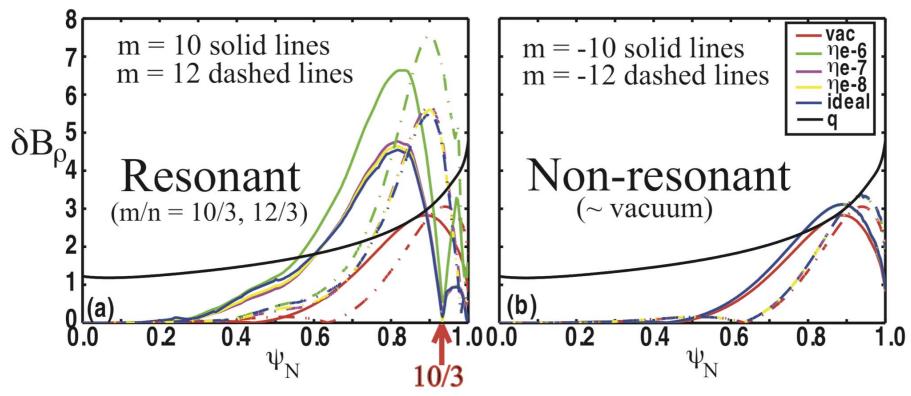
- Peak T_e , n_e gradient ratios scale approximately with I_{coil}^2 .
- Peak L_{Te} ratio increases $\sim 3 \times$ more than peak L_n ratio does, which indicates $D^{\rm RMP}/\chi_e^{\rm RMP} \sim 1/3$.

Transport Effects of RMPs: Flutter or Stochasticity?

- RMP-induced radial (ρ) magnetic perturbations δB_{ρ} :

 mostly just non-resonantly spatially "flutter" the field lines, flux surfaces,

 but can induce stochasticity if islands are created and overlap (Chirikov).
- Transport can be induced by magnetic flutter and stochasticity: flutter causes $\chi_e^{\rm RMP} \sim v_{Te} \, \lambda_e (\delta B_{
 ho}/B_0)^2$ via collisional $\parallel T_e$ transport, stochasticity causes (RR²) $\chi_e^{\rm RMP} \sim v_{Te} \, L_{\parallel c} (\delta B_{\rm st}/B_0)^2$ via \parallel motion along $\vec{B}_{\rm st}$.
- But flow screening of RMP fields inhibits reconnection, island formation & overlap, and hence stochasticity next viewgraph.


²A.B. Rechester and M.N. Rosenbluth, "Electron heat transport in a tokamak with destroyed magnetic surfaces," Phys. Rev. Lett. 40, 38 (1978).

¹J.D. Callen, "Drift-Wave Turbulence Effects on Magnetic Structure and Plasma Transport in Tokamaks," Phys. Rev. Lett. **39**, 1540 (1977).

Flow Screening Reduces δB at Regional Surfaces, But RMPs Still Induce δBs at Pedestal Top

- RMP-induced δB_{ρ} s peaked near pedestal top (Chu, NF 2011).
- Resonant δB_{ρ} s "screened" at 10/3 surface \Longrightarrow no island there.
- Ferraro paper JI2.002 at 2:30 pm will discuss 2-fluid screening.

Can Flutter Transport Reduce $|\vec{\nabla}P|$ at Pedestal Top?

- Flow screening probably prevents islands and stochasticity.
- So how large could flutter-induced plasma transport be?

Represent magnetic field by axiymmetric \vec{B}_0 plus RMP field: $\vec{B} = \vec{B}_0 + \delta \vec{B}$.

Radial perturbation $\delta \hat{B}_{\rho mn} \cos(m\theta - n\zeta)$ induces \parallel heat flow along \vec{B}_0 :

$$\delta q_{\parallel mn} \equiv -\, n\, \chi_\parallel \left(rac{ec{B}}{B}\!\cdot\!ec{
abla}T
ight) = -\, n\, \chi_\parallel \, rac{\delta \hat{B}_
ho}{B_0} \, \cos(m heta-n\zeta) \, rac{dT}{d
ho}.$$

Average radial $(\hat{\vec{e}}_{\rho} \cdot)$ heat flow induced by particle motion along \vec{B} is

$$\langle \hat{ec{e}}_
ho \cdot ec{q}
angle \, \equiv \langle \int\!\! d^3\!v \left(rac{m v^2}{2T} - rac{5}{2}
ight) \left(v_\parallel rac{\hat{ec{e}}_
ho \cdot (ec{B}_0 + \delta ec{B})}{B}
ight) \delta f \,
angle \, = \, \langle \, \delta \hat{B}_{
ho mn} \cos(m heta - n \zeta) \, \delta q_{\parallel mn} \,
angle .$$

This results in an effective radial electron heat diffusivity of ¹

$$\left|\chi_{mn} = \left(rac{\delta \hat{B}_{
ho mn}}{B_0}
ight)^2 rac{\chi_{\parallel mn}}{2},
ight| \qquad ext{which is to be summed over all } mn \; ext{RMPs.}$$

For one $mn \; rac{\chi_{e\parallel mn}}{2} \lesssim 10^8 rac{ ext{m}^2}{ ext{s}}, \; ext{so need} \; rac{\delta \hat{B}_{
ho mn}}{B_0} \gtrsim 10^{-4} \; ext{to yield} \; \chi_{emn} \sim 1 rac{ ext{m}^2}{ ext{s}}.$

RMP-Induced Flutter Modifies Electron Distribution

ullet Neglecting drifts, electron drift kinetic equation (DKE) for $ec{B}
ightarrow ec{B}_0 + \delta ec{B}$ is 1,3

$$rac{\partial f_e}{\partial t} + rac{v_\parallel}{B} (ec{B}_0 + \delta ec{B}) \cdot ec{
abla} f_e + rac{darepsilon}{dt} rac{\partial f_e}{\partial arepsilon} = \mathcal{C}\{f_e\}, \quad ext{in which } \; arepsilon = rac{m_e v_\parallel^2}{2} + \mu B - e \Phi.$$

- Lowest order solution is a Maxwellian constant along \vec{B}_0 : $f_e = f_{\mathrm{M}e}(\rho, \varepsilon)$.
- Equation for first order non-adiabatic distribution $\delta \check{h} \equiv \delta \check{f}_e (e/T_e) \delta \check{\Phi} f_{\mathrm{M}e}$ induced by a magnetic perturbation $\delta \vec{B}_{mn} \equiv \delta \check{\vec{B}}_{mn}(\rho, \theta) e^{-i(n\zeta m\theta + \varphi_{mn})}$ is³

$$v_{\parallel}\left(rac{\partial}{\partial\ell}+i(m-nq)rac{d heta}{d\ell}
ight)\delta \check{h}-\mathcal{C}\{\delta \check{h}\}=-rac{v_{\parallel}}{B_0}\,\delta \check{ar{B}}_{mn}\cdot ec{
abla}f_{\mathrm{M}e}, \quad ext{ in which } d\ell/B_0=d heta/ec{B}_0\cdot ec{
abla} heta.$$

- Trapped particle solution $\delta \check{h}_t$ solution vanishes bounce average yields no drive since trapped particles don't carry any parallel flow over $\ell \gg 2\pi R_0 q$.
- Magnetic flutter (in space) drive on right causes untrapped electron $\delta \check{h}_u$ which induces electron parallel density and heat flows, radial fluxes $(\Gamma_e \sim n_e \delta V_{e\parallel} \delta B_{\rho})$.

³J.D. Callen, A.J. Cole and C.C. Hegna, "RMP effects on pedestal plasma transport," UW-CPTC 11-13, to be at http://www.cptc.wisc.edu "soon."

Flutter Induces | Flows and Radial Transport Fluxes

ullet Parallel flows induced by mn RMP field is $(\overline{L_0^{3/2}}=1,\,L_1^{3/2}=m_ev^2/2T_e-5/2)$

• The parallel flow and heat flow cause corresponding radial transport fluxes:³

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \Gamma_e \ \Upsilon_e \end{aligned} \end{bmatrix} &\equiv egin{bmatrix} \langle \Gamma_e \cdot ec{
abla}
ho
ho \ \langle ec{q}_e \cdot ec{
abla}
ho
ho \end{aligned} \end{bmatrix} = \sum_{mn} rac{\delta \hat{B}_{
ho mn}}{B_{
m max}} egin{bmatrix} \langle n_e \delta \hat{V}_{e\parallel mn}
angle \ \langle \delta \hat{q}_{e\parallel mn}
angle \end{aligned} = -\sum_{mn} rac{\delta \hat{B}_{
ho mn}^2}{\langle B_0^2
angle} n_e egin{bmatrix} D_{mn}^p & D_{mn}^T \ \chi_{mn}^p & \chi_{mn}^T \end{bmatrix} \cdot egin{bmatrix} d \ln \hat{p}_e / d
ho \ dT_e / d
ho \end{aligned} \end{bmatrix}.$$

• Some key quantities and magnitudes in these results are:

$$oxed{\chi_e^{
m RMP} \equiv \sum_{mn} rac{\delta \hat{B}_{
ho mn}^2}{\langle B_0^2
angle} \, \chi_{
m mn}^T, \quad \chi_{mn}^T \equiv \chi_{
m ref} \, F_{mn}(x/\Delta_{
m t}),} \qquad egin{aligned} rac{D_{mn}^p}{\chi_{mn}^T} \lesssim rac{1}{3}, \end{aligned} \qquad egin{aligned} \chi_{
m ref} = f_c rac{v_{Te}^2}{
u_e}, \end{aligned}$$

Discussion: Comparing Flutter Theory to Experiment

- Flutter theory predictions in rough agreement with experiment: scaling of $\chi_e^{\rm RMP}$ and $D^{\rm RMP}$ with $\delta B_{
 ho}^2 \sim I_{\rm coil}^2$, and ratio of $D^{\rm RMP}/\chi_e^{\rm RMP} \lesssim 1/3$.
- Peak effects may be occurring in $\Psi_N \sim 0.95$ region because for $\Psi_N > 0.97$ || heat diffusivity $\chi_{e\parallel} \sim v_{Te}^2/\nu_e \sim T_e^{5/2}/n_e$ decreases strongly, for $\Psi_N < 0.93$ there may be more flow screening and reduced $\delta B_{\rho mn}(x)$?
- ullet But flutter $\chi_e^{
 m RMP}$ may be smaller than experiment:

in DIII-D
$$\chi_e^{\rm RMP} \sim 4.6 \; {
m m}^2/{
m s} \; (\#126440) \; {
m while} \; \chi_e^{
m sym} \sim 0.6 \; {
m m}^2/{
m s} \; (\#126443),$$
 whereas $\chi_e^{\rm RMP} \equiv \sum_{m,n} \frac{\delta \hat{B}_{
ho mn}^2}{B_0^2} \, \chi_{\rm ref} F_{mn}(x) \sim (10^{-8}) \, (1.75 \times 10^9) (0.04) \; \lesssim 1 \, {
m m}^2/{
m s};$

however, self-consistent flow-screened $\delta \hat{B}_{\rho mn}(x)$ are needed, and summed.

Summary

• Key effects of RMPs on pedestals are that they:

```
reduce |\vec{\nabla}P| at the pedestal top (0.9 < \Psi_N < 0.97), reduce T_e gradient there by \lesssim \times 7, reduce n_e gradient there by \lesssim \times 3, and the gradient reductions are proportional to I_{\rm coil}^2.
```

- Flow screening keeps RMPs from forming islands, stochasticity.
- RMP-flutter induces radial plasma transport at pedestal top:

$$\chi_e^{
m RMP} \equiv \sum_{m,n} rac{\delta \hat{B}_{
ho mn}^2}{B_0^2} \chi_{
m ref} F_{mn}(x) ext{ too small?}, \quad {
m but} \propto I_{
m coil}^2, \quad rac{D^{
m RMP}}{\chi_e^{
m RMP}} \lesssim rac{1}{3}.$$

• Further development of this model is needed: preliminary, simplifications, only qualitatively consistent "screening;" reducing T_e , n_e gradients helps to avoid P-B modes — is it enough?

