## Tearing Under Stress — The Collusion of 3D Fields and Resistivity at Low Rotation

#### by

### R.J. Buttery<sup>1</sup>

with

A.H. Boozer<sup>2</sup>, N.M. Ferraro<sup>1</sup>, S. Gerhardt<sup>3</sup>, R.J. La Haye<sup>1</sup>, Y.Q. Liu<sup>4</sup>, J.-K. Park<sup>3</sup>, H. Reimerdes<sup>5</sup>, S. Sabbagh<sup>2</sup>, E.J. Strait<sup>1</sup>, J.H. Yu<sup>6</sup>, and the DIII-D and NSTX Teams

<sup>1</sup>General Atomics, USA <sup>2</sup>Columbia University, USA <sup>3</sup>Princeton Plasma Physics Laboratory, USA <sup>4</sup>EURATOM/CCFE Fusion Association, UK <sup>5</sup>EPFL, Switzerland <sup>6</sup>UCSD, USA

Presented at the 53<sup>rd</sup> Annual Meeting of the APS Division of Plasma Physics, Salt Lake City, Utah

November 14-18, 2011





### 3D Fields Have Long Been Know to Pose a Limit to Low Density Ohmic Operation

- 3D "error" fields from asymmetries in tokamak construction
  - -Fields resonate with rational surface to drive formation of magnetic island





### 3D Fields Have Long Been Know to Pose a Limit to Low Density Ohmic Operation

- 3D "error" fields from asymmetries in tokamak construction
  - -Fields resonate with rational surface to drive formation of magnetic island
- Fields must brake plasma rotation first to stop natural screening currents





### 3D Fields Have Long Been Know to Pose a Limit to Low Density Ohmic Operation

- 3D "error" fields from asymmetries in tokamak construction
  - 3D "error" fields from asymmetries in tokamak construction
- -Fields resonate with rational surface to drive formation of magnetic island
  - Fields must brake plasma rotation first<sup>5</sup>
     to stop natural screening currents
    - Lower density plasmas more readily stopped
- Basis for error field correction system
  - in ITER
  - H mode plasmas expected to be fine
- -High density





[Scoville, PoP 1992]

## **3D Fields in H Mode Found to Trigger <u>Rotating</u> Modes**



 Less 3D field needed to induce modes than that required in Ohmic plasmas



- -How does a static 3D field cause a rotating mode to appear?
  - Changes to natural mode stability
- -Why is H mode so sensitive?
  - Answer lies in the plasma response

Need to understand how fields interact & what governs mode formation



[Buttery & Liu, NF 2011]

### Contents

### The plasma response to 3D fields

-Ideal and Resistive MHD

### Interaction of 3D field with tearing stability

-Braking action of 3D fields is key

### • Reducing the 3D "error" fields in ITER

-Need for more than one mode of correction

### Conclusion

-3D fields a key concern for H modes



## The Plasma Response to 3D Fields



R.J. Buttery/APS/November 2011

113-11/RJB/rs

- Plasma displacement transforms internal field
  - Plasma is an electromagnetically interconnected structure
    - Resists some displacements, accepts others
    - Preferred distortion least stable ideal mode







113-11/RJB/rs

[Lanctot & Chu]





113-11/RJB/rs

[Lanctot & Chu]

#### Plasma displacement transforms internal field

- Plasma is an electromagnetically interconnected structure
  - Resists some displacements, accepts others
  - Preferred distortion least stable ideal mode
- Perturbed current paths give order (1) change to field





113-11/RJB/rs

[Lanctot & Chu, Buttery & Liu NF 2011]

DIII-D

#### Plasma displacement transforms internal field

- Plasma is an electromagnetically interconnected structure
  - Resists some displacements, accepts others
  - Preferred distortion least stable ideal mode
- Perturbed current paths give order (1) change to field





[Buttery & Liu, NF 2011]

#### • Plasma displacement transforms internal field

 Plasma shields out field components resonant with rational q surfaces

-Flux conservation: **image currents** driven to prevent tearing of flux surface





### • Plasma displacement transforms internal field

- Plasma shields out field components resonant with rational q surfaces
  - Flux conservation: image currents driven to prevent tearing of flux surface
  - Image currents cancel resonant fields that would otherwise lead to flux tearing





### • Plasma displacement transforms internal field

- Plasma shields out field components resonant with rational q surfaces
  - Flux conservation: image currents driven to prevent tearing of flux surface
  - Image currents cancel resonant fields that would otherwise lead to flux tearing





## The Starting Point to Understand 3D Field Interactions is Through Ideal MHD... but resistivity modifies perspective

### • Plasma displacement transforms internal field

- Plasma shields out field components resonant with rational q surfaces
  - Flux conservation: image currents driven to prevent tearing of flux surface
  - Image currents cancel resonant fields that would otherwise lead to flux tearing

### But with resistivity image currents start to decay

–Enables formation of small islands ightarrow





## The Starting Point to Understand 3D Field Interactions is Through Ideal MHD... but resistivity modifies perspective

- Plasma displacement transforms internal field
- Plasma shields out field components resonant with rational q surfaces
  - Flux conservation: image currents driven to prevent tearing of flux surface
  - Image currents cancel resonant fields that would otherwise lead to flux tearing
- But with resistivity image currents start to decay
  - -Enables formation of small islands
- However, rotating plasma past 3D field helps it shield out the field
  - Viscosity → flows in island → re-generates the currents that keep the island small





113-11/RJB/rs

[Fitzpatrick Phys Fluids 1991]

## The Starting Point to Understand 3D Field Interactions is Through Ideal MHD... but resistivity modifies perspective

- Plasma displacement transforms internal field
- Plasma shields out field components resonant with rational q surfaces
  - Flux conservation: image currents driven to prevent tearing of flux surface
  - Image currents cancel resonant fields that would otherwise lead to flux tearing
- But with resistivity image currents start to decay
  - -Enables formation of small islands
- However, rotating plasma past 3D field helps it shield out the field
  - Viscosity → flows in island → re-generates the currents that keep the island small
    - Decreasing rotation enables resistive response



becreasing rotation leads to fall in image currents & more resistive response



[Buttery & Liu, NF 2011]

### Resistivity & Rotation Cause a Torque Balance to be Established with the 3D Field



Torque balance: viscous coupling vs electromagnetic forces

- -Low field/high rotation: island out of phase, suppressed  $\rightarrow$  plasma slips past -High field/low rotation: island aligns to 3D field  $\rightarrow$  grows  $\rightarrow$  stops rotation
- Resistive response depends on island phase, & so torque balance

   Process is highly nonlinear → can bifurcate to a locked state



R.J. Buttery/APS/November 2011

[Fitzpatrick Phys Fluids 1991]

### Recap — The Plasma Response to 3D Fields





R.J. Buttery/APS/November 2011

113-11/RJB/rs

### Measure response to 3D probing field

– Repeat at different beam torques and  $\beta$ 's





[Buttery & Liu, NF 2011]

113-11/RJB/rs

#### Measure response to 3D probing field Response to 10 Hz probing field -Repeat at different beam torques and $\beta$ 's >90 km/s ○ 60-90 km/s DIII-D 139571 Response (a.u.) <30 km/s</p> ▲ 30-60 km/s **3D field** Measure Ř 3 Probina response traveling wave 0 10 kНz Plasma Rotation 0 Magnetics DIII-D spectrogram 0kНz 1.6 2.0 1.2 2.4 βN 2/1 mode A de marte ante Magnetic response 0 from plasma only Locked a.u. mode (excludes applied field) 3.5 2 Time (s)



[Buttery & Liu, NF 2011]

### Measure response to 3D probing field

- Repeat at different beam torques and  $\beta$ 's
- Clear  $\beta_N$  dependence:
  - Characteristic of ideal response
  - Kink mode more readily driven at high  $\beta_{\rm N}$





[Buttery & Liu, NF 2011]

113-11/RJB/rs

### Measure response to 3D probing field

- Repeat at different beam torques and  $\beta$ 's
- Clear  $\beta_N$  dependence:
  - Characteristic of ideal response
  - Kink mode more readily driven at high  $\beta_{\rm N}$
- Rotation dependence indicative of resistive response
  - An ideal response would maintain shielding, irrespective of rotation
    - Developing response indicates breakdown of screening
- Resistive response may be an important element of how 3D fields couple to plasma at low torque





[Buttery & Liu, NF 2011]

### Need to Focus Further on Resistive Response...





Inclination to Tear How much plasma tears for given field resonant B Resistivity

Plasma tearing stability

-Governs response of plasma to applied 3D field

Size of island for given field

-Sets threshold for natural tearing mode instability



R.J. Buttery/APS/November 2011

## Interaction of 3D Field with Tearing Stability

- Rotation dependence
- Braking action of fields
  - → 3D field limits in H mode



## H Mode Plasmas are Close to Natural Tearing Instability



 $-If \beta$  too high or current profile unstable





### H Mode Plasmas are Close to Natural Tearing Instability, ...which depends on plasma rotation





## 3D Fields Brake Plasma to Trigger Rotating or Stationary Modes





## 3D Fields Brake Plasma to Trigger Rotating or Stationary Modes

- 3D field ramps trigger modes in NSTX
- With enough braking, mode born locked
  - -Lower levels of braking  $\rightarrow$  rotating modes
    - Action through inherent stability changes
- Resonant (n=1) and non-resonant (n=3) fields act similarly on braking & modes
  - -Braking action through NTV?
  - Resonant part of interaction may be weak in these high rotation plasmas
- Mode onset is not due to resonant interaction of the 3D field
  - -Mode not directly driven by field
  - It is an inherent stability change through braking of rotation



Combined n=1 + n=3 field



### At Low Torque 3D Fields Pose Greater Concern

• Consider cases close to tearing instability at low torque in DIII-D



-**Tearing β<sub>N</sub> limit falls with rotation** (no 3D field)





### At Low Torque 3D Fields Pose Greater Concern

• Consider cases close to tearing instability at low torque in DIII-D



- –Tearing  $\beta_{\text{N}}$  limit falls with rotation (no 3D field)
- -3D field torque brakes plasma, decreasing stability → mode grows & locks





### A 3D Field Limit is Observed in $\beta$ and Torque





113-11/RJB/rs

## 3D Field Limit Depends on Proximity to Natural Tearing Limit



### **ITER Prediction**

 ITER heating systems inject much less torque per MW

Approximate this to zero for a worst case scenario

• For torque-free plasmas can treat rotation as a "hidden" parameter

-Plays an important role...

-But self generated - a part of the scaling

 Measure field thresholds to trigger modes in torque free H modes

–Extrapolate in  $\rho^*$  and  $\nu$  by measuring toroidal field and density scaling





## ITER Prediction: 3D Field Limits in H Mode are Even More Stringent than in Ohmic Regimes



 Approximate this to zero for a worst case scenario

• For torque-free plasmas can treat rotation as a "hidden" parameter

-Plays an important role...

-But self generated - a part of the scaling

 Measure field thresholds to trigger modes in torque free H modes



-Extrapolate in  $\rho^*$  and v by measuring **toroidal field** and density scaling:

Required  
precision 
$$\Rightarrow \frac{\delta B}{B_T} = (1.3 - [\beta_N - 1.8]) \times \frac{(n_e / 10^{20} m^{-3})(R / 6.2m)^{0.725} (q_{95} / 3.1)^{0.83*}}{(B_T / 5.3T)^{1.02}} \times 10^{-4}$$

- Predicts δB/B < 1.3x10<sup>-4</sup> to avoid modes in ITER Q=10 baseline
 40% lower than Ohmic regime scaling, even though H mode 5x higher density



## Reducing 3D "Error" Fields in ITER



### Updated ITER Error Field Predictions Suggest Significant Error Field Correction Required

- Monte Carlo analysis of error field sources updated for ideal response formalism
  - Sum up sources conservative to allow for lack of magnetic optimization in ITER plans
  - -Total possible: δB/B~2.8x10<sup>-4</sup> cf expected limit of 1.3x10<sup>-4</sup>
- Must remove 55% of error field in ITER baseline, or more for higher β regimes

 This task is planned for ITER error field correction coils

#### Can this level of correction be met?

- Assistance needed from internal ELM coils?

| Source                     | δ <b>B/B/10</b> -5 |
|----------------------------|--------------------|
| TF, CS, PF misalignments   | 4.3                |
| ТВМ                        | 4.3                |
| Ferromagnetic inserts      | 1.5                |
| NBI*                       | 5.2                |
| TF, CS, PF feeds & joints* | 4.3                |
| Ferromagnetic saturation*  | 4.3                |
| Bioshield*                 | 4.3                |
| Tokamak Complex*           | 0.2                |
| Possible total             | 2.8×10-4           |

\*scaled vacuum calculation





## Experience with Error Field Correction Has Shown Limited Benefits (see p

#### (see poster for review)

- Typically performed in Ohmic plasmas
- Benefits measured by density access
   Low density limit proportional to error field
   -3D coil currents optimized to lower limit
- Single array correction achieves improvements from ~0 to 50%



Howell APS 2003, Howell NF 2007, Wolfe PoP 2005]



113-11/RJB/rs

## Experience with Error Field Correction Has Shown Limited Benefits (see p

#### (see poster for review)

- Typically performed in Ohmic plasmas
- Benefits measured by density access
   Low density limit proportional to error field
   -3D coil currents optimized to lower limit
- Single array correction achieves improvements from ~0 to 50%
  - -Improved with more coils, best ~70%
  - Design of coils matter some offer little improvement, poloidal pairs do better
    - eg. JET EFCCs seem orthogonal to error field

### • Key questions

- Do multiple field harmonics play a role?
- -Is plasma response more complex than through a single dominant ideal mode?
- -Is there an inherent stability limit?





R.J. Buttery/APS/November 2011

113-11/RJB/rs

[Scoville NF 2003, Buttery NF 2000,

Howell APS 2003, Howell NF 2007, Wolfe PoP 2005]

## Proxy Error Field Study Shows Correction Limits Arise Through Higher Order n=1 Ideal Modes

#### Use DIII-D I coils to correct proxy error field from C coils

- Well above usual machine error & density limits
- -Pure n=1 no n=0,2,3,4
- Optimal correction yields only 50% improvement in density limit
  - -Confirms correction limits arise from additional components in n=1 field
  - Must couple through more than one ideal MHD mode







### Interpretation: Error Field Interacts through Multiple Modes and Surfaces, Requiring Multiple Coil Correction

- With a single ideal mode, perfect correction should be possible
  - Additional ideal modes enable residual field to pass through to core plasma
- But if braking is resonant with a single surface, perfect correction is still possible
   Braking must be at multiple surfaces
- Correction must minimize ideal response or minimize internal braking
  - -Outstanding: Important to resolve how and where braking manifests in the plasma
- For ITER 3D field coils must have flexibility to adapt to error field structure and the modes it couples through
  - Multiple arrays needed (& planned) to push down drives present while not raising others



braking plasma





Cancel field across volume - Challenging but needed if NTV braking



### Conclusions

- 3D fields collude with the plasma resistive response at low rotation to cause tearing modes
  - -Flow shear places incipient tearing mode "under stress", decreasing free energy available to drive the mode
  - -3D fields decrease flow shear to access instability
- This leads to a limit for tolerable 3D fields in ITER's baseline low rotation H mode
  - -Scalings obtained, field error predictions updated...
  - -Substantial error correction needed
- Experience with error field correction shows interaction through more than one mode
  - -Multiple coil arrays needed for good correction
    - Planned in ITER; additional internal ELM coils provide important margin

Understanding the processes of 3D fields and tearing is fascinating physics of crucial importance to resolving development of low rotation regimes





# Survey of Experience with Error Correction across the world







300





= 1402 amps

2000

3000

q<sub>95</sub> = 3.3 I\_ = 1159 amp

1000





68

JET

- DIII-D C-coils access lower density
  - -But correction imperfect: ~50%
  - -Improved to ~70% with "n=1" coil
  - -I coils more effective than C coils

### • JET saddle coils measure 1.2 G error

- -Correction  $\rightarrow$  35% lower density
- -But JET's EFCC offered little benefit →

 Do couple to plasma to induce tearing but don't "see" intrinsic error

JET EFCCs



\*vacuum 2/1 measure

[Howell, APS 2003]

R.J. Buttery/APS/November 2011

### **Experimental Experience with Error Field Correction**

### • DIII-D C-coils access lower density

- -But correction imperfect: ~50%
- -Improved to ~70% with "n=1" coil
- -I coils more effective than C coils

### • JET saddle coils measure 1.2 G error

- -Correction  $\rightarrow$  35% lower density
- -But JET's EFCC offered little benefit
  - Do couple to plasma to induce tearing but don't "see" intrinsic error
- MAST EFCCs offer 30%+ benefit
- C-Mod A coil 2x4 array gives over 60% improvement in density





[Wolfe, PoP 2005]

- DIII-D C-coils access lower density

   But correction imperfect: ~50%
   Improved to ~70% with "n=1" coil
  - -I coils more effective than C coils
- JET saddle coils measure 1.2 G error
  - -Correction  $\rightarrow$  35% lower density
  - -But JET's EFCC offered little benefit
    - Do couple to plasma to induce tearing but don't "see" intrinsic error
- MAST EFCCs offer 30%+ benefit
- C-Mod A coil 2x4 array gives over 60% improvement in density

### **Observations**

- Correction benefits depend on shape of EF <u>and</u> coils
- More coils improve correction
- Internal twin arrays have been most effective
- Coils can couple orthogonally to machine error
- > Is this intrinsic instability?
- Is this all through n=1?
- Where does error field couple to plasma to cause braking?

