Neoclassical Toroidal Viscosity from Non-axisymmetric Magnetic Fields Allows ELM-free, Quiescent H-mode Operation in DIII-D Under Reactor-relevant Conditions

by K.H. Burrell¹

A.M. Garofalo¹, W.M. Solomon², J.C. DeBoo¹, 145117.04500 60 M.E. Fenstermacher³, G.R. McKee⁴, T.H. Osborne¹ 131924.03000 J.-K. Park², M.J. Schaffer¹, L. Schmitz⁵, P.B. Snyder¹, G.M. Staebler¹, Z. Yan⁴, L. Zeng⁵ 40 ¹General Atomics Without magnetic torque Ω (krad/s) 00 ²Princeton Plasma Physics Laboratory (ELMing) ³Lawrence Livermore National Laboratory ⁴University of Wisconsin ⁵University of California at Los Angeles 0 Presented at 53rd Annual Meeting of the With magnetic torque (QH) -20 **APS Division of Plasma Physics** 0.4 1.2 0.0 0.2 0.6 0.8 1.0 Salt Lake City, Utah ρ

November 14-18, 2011

Quiescent H-mode Provides H-mode Confinement without ELMs at Low Injected Co-I_p Torque

- H-mode confinement is required to meet fusion goals in future devices such as ITER
 - Pulsed divertor heat loads from edge localized modes (ELMs) will rapidly ablate the divertor tiles
- QH-mode operates without ELMs and has H-mode confinement levels (ITER H_{98v2} > 1)
- QH-mode requires significant shear in edge rotation
 - Easiest to produce with neutral beam injection (NBI) in direction opposite to plasma current (counter-l_p)
 - Future devices want to use co-I_p NBI or no NBI
- Sustained QH-mode with reactor relevant level of co-I_p NBI by using counter-I_p torque driven by non-resonant magnetic fields (NRMF)
 - Counter-I_p torque sustains edge rotation shear
 - Physics is consistent with theory of neoclassical toroidal viscosity (NTV)

Quiescent H-mode Provides H-mode Confinement without ELMs at Low Injected Co-I_p Torque

- H-mode confinement is required to meet fusion goals in future devices such as ITER
 - Pulsed divertor heat loads from edge localized modes (ELMs) will rapidly ablate the divertor tiles
- QH-mode operates without ELMs and has H-mode confinement levels (ITER H_{98v2} > 1)
- QH-mode requires significant shear in edge rotation
 - Easiest to produce with neutral beam injection (NBI) in direction opposite to plasma current (counter-I_p)
 - Future devices want to use co-I_p NBI or no NBI
- Sustained QH-mode with reactor relevant level of co-I_p NBI by using counter-I_p torque driven by non-resonant magnetic fields (NRMF)
 - Counter-I_p torque sustains edge rotation shear
 - Physics is consistent with theory of neoclassical toroidal viscosity (NTV)

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Quiescent H-modes are the Ideal H-mode Plasmas

- QH-modes exhibit the H-mode confinement improvement and operate ELM-free with
 - Controlled density and constant radiated power
 - Long duration (>4 s or 30 $\tau_{\rm E}$) limited only by hardware constraints
- Additional edge particle transport provided by edge harmonic oscillation (EHO)
 - Allows edge plasma to reach transport equilibrium with gradients below ELM stability limit
 - Time-averaged edge particle transport is faster than in ELMing H-mode
- ELM stabilization does not require externally imposed non-axisymmetric fields
- QH-mode seen with injected power from 3 MW over 15 MW
 - Maximum power limited by core beta limit
- QH-mode discovered first in counter-injected discharges in DIII-D
 - Subsequently seen in JT-60U, JET and ASDEX-U

Edge Operating Points of QH-mode Discharges are Near but Below Peeling-ballooning Mode Stability Boundary

- Stability is calculated with ELITE code [P.B. Snyder et al., Phys Plasmas (2002)]
- Modes are driven unstable by edge pressure gradient and edge current
- QH-mode plasma with EHO operates near but below peeling stability boundary
- ELMing cases are closer to peeling boundary

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without NRMF, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without NRMF, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return

QH-mode Operation in Future Devices Requires Technique to Maintain Shear in Edge Rotation at Small NBI Torque

- Previous experimental work demonstrated importance of edge rotational shear [K.H Burrell et al., Phys. Rev. Lett. (2009)]
- Observations consistent with theory of EHO as low-n kink-peeling mode destabilized by rotational shear [P.B. Snyder et at., Nucl. Fusion (2007)]
- Without NRMF, as NBI torque goes from counter to co-I_p, magnitude of edge rotational shear decreases and ELMs return
- Alternate means needed to maintain edge rotational shear at low co-l_p NBI torque

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Non-axisymmetric Fields can Generate Significant Torques through Neoclassical Toroidal Viscosity

 Small (δB/B₀~10⁻³) non-resonant magnetic fields (NRMF) generate neoclassical toroidal viscous torque on bulk plasma of the form

$$\frac{\partial \langle \rho_m R^2 \Omega \rangle}{\partial t} \bigg|_{NTV} = -\rho_m \mu_{||} (\Omega, \nu_i) \left(\frac{\delta B_{3D}}{B_0} \right)^2 \left(\langle R^2 \Omega \rangle - \langle R^2 \Omega_{NTV} \rangle \right)$$

which is absent in perfect axisymmetry

- Neoclassical offset velocity $V_{\phi}^{NTV} = R\Omega_{NTV}$ is in the counter I_p direction
 - Nonzero offset has been seen experimentally
 [A.M. Garofalo et al., Phys. Rev. Lett. (2008)]
- NTV torque is in the counter-I_p direction for $V_{\phi} > V_{\phi}^{NTV}$
- μ_{||} (Ω ν_i) has a strong local peak near
 Ω = 0
 - Peak has been seen experimentally
 [A.J. Cole et al., Phys. Rev. Lett. (2011)]

K.H. Burrell/APS/November 2011

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Non-axisymmetric Coils on DIII-D Allow Creation of Magnetic Perturbations

n=3 l-coil and n=1 C-coil configuration (with up-down symmetric, even parity, l-coil)

- Two sets of non-axisymmetric coils can be used to correct intrinsic error fields and apply magnetic perturbations
- For experiments in 2011, C-coil was used to create even parity n=3 field
- I-coil was configured for intrinsic error field correction and to apply small even parity n=3 field in some cases

Non-axisymmetric Fields used in Present Experiment are Primarily Nonresonant

Addition of NTV Torque Allows QH-mode Operation with Greater co-I_p NBI Torque

- Gradually changing NBI torque to greater co-I_p value allows testing of torque limits
- Shot without n=3 NRMF has lower rotation speed and, ultimately, disrupts due to locked mode

Addition of NTV Torque Allows QH-mode Operation with Greater co-I_p NBI Torque

- Gradually changing NBI torque to greater co-I_p value allows testing of torque limits
- Shot without n=3 NRMF has lower rotation speed and, ultimately, disrupts due to locked mode
- With n=3 NRMF, discharge maintains QH-mode with counter-I_p rotation even though NBI torque is co-I_p

Even with NRMF, Torque from n=1 EHO causes Locking During Torque Rampdown

Achieving QH-mode with Counter-I_p Rotation and co-I_p NBI Torque Requires Suppression of n=1 Component of the EHO

 In experiments in 2008-2010, EHO had toroidal mode number n=3

- EHO flipped from n=1 to n=3 when NRMF was turned on
- These experiments used C-coil for error field correction and I-coil to produce odd parity n=3 NRMF

Achieving QH-mode with Counter-I_p Rotation and co-I_p NBI Torque Requires Suppression of n=1 Component of the EHO

- In experiments in 2008-2010, EHO had toroidal mode number n=3
 - EHO flipped from n=1 to n=3 when NRMF was turned on
 - These experiments used C-coil for error field correction and I-coil to produce odd parity n=3 NRMF
- In 2011 experiments, NRMF did not change EHO toroidal mode number
 - n=3 from I-coil and C-coil has even parity (up-down symmetric)
- In 2011 experiments, eliminated n=1 EHO later in shot by exploiting previous observation that EHO changes from coherent mode to broadband MHD as density increases

EHO Changes from Coherent Mode to Broadband MHD as Rotation Decreases and Density Increases

15-OCT-2011 12:43:49

K.H. Burrell/APS/November 2011

QH-mode with Counter-I_p Rotation Maintained with $co-I_p$ NBI Torque up to about 1-1.2 Nm

 Raise NBI torque level from shot to shot to determine co-I_p limit

- Digital plasma control system adjusts neutral beams to maintain constant β_N = 2.1 while torque is ramped from counter-I_p to co-I_p
- Pedestal rotation remains counter-I_p even with co-I_p NBI torque

QH-mode with Counter-I_p Rotation Maintained with $co-I_p$ NBI Torque up to about 1-1.2 Nm

 Raise NBI torque level from shot to shot to determine co-I_p limit

- Digital plasma control system adjusts neutral beams to maintain constant β_N = 2.1 while torque is ramped from counter-I_p to co-I_p
- Pedestal rotation remains counter-I_p even with co-I_p NBI torque

QH-mode with Counter-I_p Rotation Maintained with $co-I_p$ NBI Torque up to about 1-1.2 Nm

 Raise NBI torque level from shot to shot to determine co-I_p limit

- Digital plasma control system adjusts neutral beams to maintain constant β_N = 2.1 while torque is ramped from counter-I_p to co-I_p
- Pedestal rotation remains counter-I_p even with co-I_p NBI torque

QH-modes with Non-Resonant Magnetic Fields Operate Near Peeling Stability Boundary

 Operating point near peeling boundary is similar with and without NRMF

Preliminary Experiment Investigated QH-mode using NTV Torque Produced only by Coil Outside Toroidal Field Coil

- Shot runs with n=3 field from C-coil only
 - C-coil located outside toroidal coil
- Counter-I_p rotation obtained with zero net NBI torque

 Co-I_p NBI torque limit not yet established for this coil configuration

Initial Investigation of Low q, Low NBI Torque QH-mode has Fusion Gain Reaching ITER Design Value G = 0.4

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Radial Profiles of Rotation with and Without Torque from NRMF Show Clear Effect of n=3 Field

- With NRMF, counter-I_p rotation and strong edge rotational shear maintained even for co-I_p NBI torque
 - QH-mode needs edge rotational shear
- Without NRMF, co-I_p NBI torque yields co-I_p rotation
- Comparison made at similar NBI torque (~1.4 Nm) and density (~3.6 x 10¹⁹m⁻³)

Quantitative NTV Torque Calculations use IPEC+NTV Code

- Most difficult part of evaluating NTV torque is calculation of perturbed field in the plasma
- IPEC code evaluates $\delta B/B_0$
 - [J.-K. Park et al., Phys. Plasmas (2007)]

• Generalized neoclassical model used to evaluate NTV torque

- [J.-K. Park et al., Phys. Rev. Lett. (2009)]

Rotation Bifurcation as NBI Torque Increases is Qualitatively Consistent with Theory of NTV Torque

- Theory predicts rotation speed should jump when sum of other torques exceeds peak counter-I_p NTV torque
- IPEC+NTV calculates peak NTV torque ~3 Nm

Larger Counter-I_p Rotation with n=3 NRMF from C-coil Qualitatively Consistent with Prediction from NTV Theory

- Shots both have zero net NBI torque and similar density
- Shot with greater counter-I_p rotation has dominant n=3 NRMF from C-coil while other shot has dominant n=3 NRMF from I-coil
- Greater counter-I_p rotation for same NBI torque implies greater counter-I_p torque from NTV
- IPEC+NTV code predicts that n=3 from C-coil produces more NTV torque

Theory Calculations of NRMF Torque (IPEC+NTV) Consistent with Experimental Observations

• Prediction of NRMF torque evolution as toroidal rotation is slowed down is compared with transport analysis of experimental data

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Confinement Improves with NBI Torque Reduction

- All discharges MHD quiet, all with NRMF applied
- Confinement does not change with time at constant NBI torque
- Confinement improvement does not depend on NBI torque ramp rate

K.H. Burrell/APS/November 2011

Reduced Density Fluctuations at $\rho \ge 0.8$ Accompany Confinement Improvement

- Energy confinement increases with decreasing NBI torque and rotation
 - Increase not due to differences in beam absorption with varying mix of co- and ctr-NBI
- Measured turbulence (density fluctuations from BES, DBS) is reduced at lower rotation, consistent with improved confinement

K.H. Burrell/APS/November 2011

Edge Shearing Rate at ρ>0.8 Increases at Lower Rotation

Outline

- Introduction to QH-mode
- NTV from nonaxisymmetric fields
- Co-I_p torque experiments
- Comparison with NTV theory
- Confinement improvement at low torque
- Extrapolation to ITER

Scaling the DIII-D NBI Torque to ITER

- Define torque T_{DIII-D} as equivalent to T_{ITER} when NBI-driven angular rotation speeds match $\omega_{DIII-D} = \omega_{ITER}$
- Considering global torque balance (0-D), angular momentum L, torque T and moment of inertia I are related by

$$L = I\omega = T \tau_L$$

- If we assume τ_{L} and τ_{E} scale the same way, the DIII-D torque equivalent to ITER is

$$\mathbf{T}_{\mathsf{DIII-D}} = \mathbf{T}_{\mathsf{ITER}} \quad \frac{\mathbf{I}_{\mathsf{DIII-D}}}{\mathbf{I}_{\mathsf{ITER}}} \quad \frac{\tau_{\mathsf{E}}^{\mathsf{ITER}}}{\tau_{\mathsf{E}}^{\mathsf{DIII-D}}}$$

- Using values from ITER scenario 2, $T_{DIII-D} \approx 0.01T_{ITER}$
- This means that the ITER NBI torque of 35 Nm is equivalent to 0.35 Nm NBI torque on DIII-D

Peeling Ballooning Stability Calculations Predict that ITER Pedestal Will Operate on Peeling Boundary Where QH-mode can Exist

- Theory model (P.B. Snyder) applies EPED 1 pedestal model to ITER
- Model allows calculation of edge pedestal stability for various assumed pedestal densities
- Results show that ITER edge will be on the peeling stability boundary for pedestal densities below 1.2 x 10²⁰ m⁻³
 - Pedestal density of 1.2 x 10²⁰ m⁻³ is well above ITER design value

- All QH-mode plasmas analyzed to date operate at or near the peeling boundary
- Accordingly, ITER's pedestal will be in the QH-mode parameter range of collisionality and beta

QH-mode Sustained by NTV Torque from Non-axisymmetric Fields is a Promising Operating Mode for Future Burning Plasmas

- Using NTV torque to replace counter-I_p NBI torque, achieved long duration QH-mode with co-I_p NBI torque up to 1.0-1.2 Nm
 - Co-I_p NBI torque is 3-4 times scaled torque from ITER beams
 - Used ITER-relevant shape, $\nu_{\rm ped}^{*}$, $\beta_{\rm N}^{\rm ped}$ and ${\rm H_{98y2}}$
 - Preliminary low $q_{95} = 3.4$ QH-mode reaches fusion gain G=0.4

• Demonstrated net zero NBI torque operation using n=3 field from C-coil only

- Co-I_D NBI torque limit not determined yet in this configuration
- If limit is high enough, co-NBI torque QH-mode would be possible with n=3 field from coils outside the toroidal coil
- In this regime, global energy confinement improves with decreasing rotation (H_{98y2} =1.3)
 - Improvement correlates with increase in E x B shear and decrease in density fluctuations around ρ = 0.8-0.9

• QH-mode work has made significant contact with theory

- Importance of edge rotational shear is consistent with edge peeling-ballooning theory
- Qualitative and semi-quantitative agreement with predicted NTV torque

