Numerical Analysis of Resonant Magnetic Perturbations for ELM Control in ITER

D.M. Orlov¹

T.E. Evans², R.A. Moyer¹, M.J. Schaffer², O. Schmitz³

¹University of California, San Diego ²General Atomics ³Forschungszentrum Juelich

Presented at the 52nd Annual Meeting of the APS Division of Plasma Physics Chicago, Illinois

November 8-12, 2010

Perturbed Vacuum Magnetic Field Modeling is Correlated with ELM Suppression in DIII-D

- Perturbed vacuum magnetic field model
 D_{CHIR}
 Field Line Loss ratio
- Criteria for ELM suppression D_{CHIR} = 0.165
- Underlying physics of RMP ELM suppression are not well understood
- Plasma response is important (i.e. MARS-F, M.J. Lanctot BI3.00002) and should be included in the future study

The 3x9 RMP ITER Coil Geometry was Implemented in TRIP3D

Internal RMP coils (view from inside)

• ITER's design includes

- Internal RMP coils (3 rows by 9 coils)
- Error Field Correction coils (3 rows by 6 coils, not shown)
- EFC coils have little effect on RMP ELM suppression
- Implemented ITER wall geometry

Vacuum Field Modeling Being Done with ITER H-mode and Steady State Equilibria Generated by Corsica

Modeling of ITER 3x9 RMP Fields has been Done Using Square, Cosine and Sine Wave Coil Currents

Modeling of ITER 3x9 RMP Fields has been Done Using Square, Cosine and Sine Wave Coil Currents

Modeling of ITER 3x9 RMP Fields has been Done Using Square, Cosine and Sine Wave Coil Currents

Chirikov parameter – vacuum magnetic island overlap parameter

- width of island overlap region $\Delta_{CHIR} = 0.18 - 0.23$ exceeds the criteria for ELM suppression in DIII-D $\Delta_{CHIR} = 0.165$

Chirikov parameter – vacuum magnetic island overlap parameter

Field Line Loss ratio - ratio of field lines that hit the divertor to the total number of field lines started on a particular flux surface

- Width of island overlap region $\Delta_{CHIR} = 0.18 0.23$ exceeds the criteria for ELM suppression in DIII-D $\Delta_{CHIR} = 0.165$
- TRIP3D vacuum field line tracing code
- Field Line Loss Fraction has broad radial profile

Chirikov parameter – vacuum magnetic island overlap parameter

Field Line Loss ratio - ratio of field lines that hit the divertor to the total number of field lines started on a particular flux surface

- Width of island overlap region $\Delta_{CHIR} = 0.18 0.23$ exceeds the criteria for ELM suppression in DIII-D $\Delta_{CHIR} = 0.165$
- TRIP3D vacuum field line tracing code
- Field Line Loss Fraction has broad radial profile

- Width of island overlap region $\Delta_{CHIR} = 0.18 - 0.23$ exceeds the criteria for ELM suppression in DIII-D $\Delta_{CHIR} = 0.165$

- TRIP3D vacuum field line tracing code
- Field Line Loss Fraction has broad radial profile

Field Line Loss is more sensitive to RMP current amplitude than island overlap width

Vacuum Field Line Loss in ITER is Broader than in DIII-D RMP ELM Suppressed Discharges

- 90 kAt n=4 square wave: field lines are lost from the plasma starting below Ψ_N=0.7
 95% FLL in the pedestal
- 90 kAt n=4 cosine waveform: broad field line loss profile starting from Ψ_N=0.8 FLL ratio of 80% in the pedestal region
- 90 kAt n=4 sine waveform: broad field line loss profile starting from Ψ_N =0.75 FLL ratio of 80% in the pedestal region
- Sine waveform was optimized for ITER H-mode scenario and has a broader FLL profile than cosine waveform

Sufficiently Large Vacuum FLLs are Found in ITER Steady State Scenario

- In the ITER Steady State scenario, square and cosine n=4 90 kAt waveforms show good results producing sufficient vacuum Field Line Loss
- The sine wave is not optimized for the Steady State scenario in ITER and has a moderate vacuum Field Line Loss profile
- ITER RMP coils can be optimized for various scenarios and for different q₉₅

RMP coils n=4 90kAt square waveform

Coil failure study ITER H-mode Scenario, RMP coils, square wave n=4

Single coil failure

- 15 MA (H-mode) scenario, RMP coils only
- The target value for ELM suppression is $\Delta_{CHIR} = 0.165$
- Solid black line at Δ_{CHIR} = 0.23 corresponds to all 27 coils working normally

NATIONAL FUSION FACILITY SAN DIEGO

- 15 MA (H-mode) scenario, RMP coils only
- The target value for ELM suppression is $\Delta_{CHIR} = 0.165$
- Solid black line at Δ_{CHIR} = 0.23 corresponds to all 27 coils working normally

NATIONAL FUSION FACILITY SAN DIEGO

- 15 MA (H-mode) scenario, RMP coils only
- The target value for ELM suppression is $\Delta_{CHIR} = 0.165$
- Solid black line at Δ_{CHIR} = 0.23 corresponds to all 27 coils working normally

 <th co

- 15 MA (H-mode) scenario, RMP coils only
- The target value for ELM suppression is $\Delta_{CHIR} = 0.165$
- Solid black line at Δ_{CHIR} = 0.23 corresponds to all 27 coils working normally

H-mode Coil Failure Analysis Indicates that the Vacuum FLL Criteria is Maintained with 3 Dead Coils in a Single Row

H-mode Coil Failure Analysis Indicates that the Vacuum FLL Criteria is Maintained with 3 Dead Coils in a Single Row

The vacuum FLLF value for successful ELM suppression in DIII-D ITER similar shape shot with 4 kA n=3 even parity I-coils is

FLLF = 0.7763

Summary

- Current design of ITER RMP coil set exceeds the DIII-D criteria correlated with ELM suppression using either a square, cosine or sine wave
- The studied n=4 square, cosine and sine waveforms show very good vacuum island overlap region width values and vacuum field line loss radial profiles for both H-mode and Steady state operation in ITER
- These configurations and current distributions are robust and show good characteristics over a range of RMP coil current amplitudes and phases
- ITER RMP coils have flexibility for different q₉₅
- They also provide a significant operational margin in the event of up to three isolated coil loop failures

DM Orlov/APS/November 2010

313-10/DMO/jy