Off-Axis Fishbone-like Instability and Excitation of Resistive Wall Mode in JT-60U and DIII-D

^{by} M. Okabayashi¹

with

G. Matsunaga², M. Takechi², W.W. Heidbrink³, Y. In⁴, Y. Liu⁵, N. Asakiura², R. Budny¹, J.S. deGrassie⁶, J. Hanson⁷, R.J. La Haye⁶, M.J. Lanctot⁷, J. Manickam¹, H. Reimerdes⁷, K. Shinohara², and E.J. Strait⁶ and acknowledgment of: G. Fu¹, N.N, Gorelenkov¹, and R. Nazikian¹

¹Princeton Plasma Physics Laboratory ²Japan Atomic Energy Agency ³University of California-Irvine ⁴FAR-TECH, Inc. ⁵Euratom/CCFE Fusion Association ⁶General Atomics ⁷Columbia University

Presented at the 52nd Annual Meeting of the APS Division of Plasma Physics Chicago, Illinois

November 8-12, 2010

Tokamak-reactors Have Been Looking for High β_{N} Regime

JT-60U and DIII-D Successfully Accessed High β_{N} Regime

•• However, MHD instabilities prevented long-duration high β_N discharge

Energetic Particle (EP) Driven Modes Seem to Terminate Many Discharges at High b and Low Rotation

DIII-D

The Characteristics of These Instabilities are Similar in JT-60U and DIII-D

" Energetic particle-driven Wall Mode (EWM)" in JT-60U: G. Matsunaga, et al., PRL (2009) "Off-axis fishbone-driven" RWM in DIII-D: M. Okabayashi. et al., Nucl. Fusion (2009)

- We simply use "Off-axis-Fishbone" Mode (OFM)

Early EP-driven Mode Onset was a Serious Obstacle for Long-duration High β_N Discharges in JT-60U

Classical Fishbone Provides a Paradigm for New EP-driven Mode

EP-driven Mode in Wall-stabilized High β_N Plasmas

Hypothesis: Transiently-driven EP Mode Excites RWMs

Hypothesis: Transiently-driven EP Mode Excites RWMs

Hypothesis: Transiently-driven EP Mode Excites RWMs

Outline

- Energetic Particle (EP)-driven "Energetic Particle Wall Mode(JT-60U) and "Off-axis-Fishbone Mode (DIII-D)" can trigger RWM in JT-60U and DIII-D, preventing the high β_N operation
 - During the burst, EP density n_{EP} decreases plasma rotation Ω_{rot} decreases \rightarrow reducing the EP kinetic effect
- EP-driven mode Characteristics:
 - Similar in JT-60U / DIII-D, including non-linear mode distortion
 - EP loss coincided with the increase of mode distortion
- MARS-K (RWM stability analysis) demonstrates the role of EPs

The Off-axis Fishbone-like Mode has been Explored with Parameters Similar in JT-60U and DIII-D: q_0 well above Unity

JT-60U

2.1

2.3

1.0

1.7

1.5 **Bt (T)**

M. Okabayashi/APS/November 2010

Frequency Behavior Suggests that these Bursting MHD Modes are EP-driven

- The initial frequency is close to precession frequency of trapped Eps
- Mirnov frequency **chirping down** to very low frequency $\leq 1 \text{ kHz}$
- Mode is localized around q=2 [Matsunaga, PRL 2009]

The Bursting Mode Resonates with the EP Precession Drift like Classical Fishbone

JT-60U/DIII-D

 Initial frequency (at the onset of burst)

$$f_{init} = f_{prec} + f_{rot}$$

- $f_{\text{prec}} = -6 \text{ kHz} (\text{DIII-D}, 70 \text{keV})$ = -2 kHz (JT-60U,85 keV) (without electric field)
 - Precession frequency of trapped EPs calculated With Orbit Following Monte-Carlo (OFMC) Code

Off-axis fishbone mode affects key parameters for the **RWM Stabilization mechanisms**

DIII-C

reducing

reduction

 \rightarrow losing EP

EP Losses Act like a Torque Impulse ⇒Toroidal Rotation Reduction

- DIII-D
- Total fast-ion loss rate inferred from slope of neutrons: -d(I_{neu}/dt)/I_{neu}

 $\Delta I_{neu} / I_{neu} \sim 10\% \rightarrow \Delta n_{EP} / n_{EP} \sim 9 - 10\%$

(based on TRANSP analysis)

- Larger Reduction occurs at $R \ge R_{q=2}$
- EP losses cause sudden

Non-ambipolar Er field buildup

(similar to blip of NBI, ripple EP loss)

- CER acquired in 0.5 ms sampling
- Conditionally average 8 similar bursts (deGrassie PoP 2006)

Decrease in Rotation is Correlated with Decrease in Neutron Rate

- Drop after OFM events
 - $-\Delta n_{EP}/n_{EP} \sim 5 10\%$
 - ΔVφ ~ -10 km/s

are common

~ 40 events of OFM 141086/141092/1500-2000ms

Decrease in Rotation is Correlated with Decrease in Neutron Rate

~ 40 events of OFM 141086/141092/1500-2000ms

EP Losses Increase Coincides With The Mode Distortion

DIII-D

EP loss occurs in "beacon" manner synchronized with mode phasing

M. Okabayashi/APS/November 2010

Floating Potential in the Divertor Shows Positive Spikes with Higher Mode Distortion in JT-60U

• Positive spikes imply possible EP losses

JT-60L

Mode Distortion in JT-60U / DIII-D Shows Similar Poloidal Mode Structure

• Loops are separated by ~ one pol. wave length of m=3

JT-60U/DIII-D

The Mode Distortion Follows the q=2 Pitch - Poloidal Mode Structure

EP Losses "Beacon" Shows q=2 Pitch Dependence

 PHASELAG: phase delay of the signal peaking of EP diagnostic to a peak of a fixed mirnov loop EP diagnostics located at various off-midplane (θ) and toroidal location (Φ):

DIII-D

- Ion cyclotron emission ICE)
- Beam ion loss detector (BILD)
- Neutral particle analyzer (NPA)
- Fast ion loss detector (FILD)
- Langmuir probe (ISAT)
 - Numerical simulation is in progress

The n=1 Mode is the External Kink Character, based on the Response to the Applied n=1 field through Feedback

Applied field: m/n=3/1

- External field impacted the mode development
- → Mode is External kink character in wall-stabilized 500A plasmas

M. Okabayashi/APS/November 2010

Rapid Drop of Ω_{rot} and n_{EP} Provides a Unique Approach to Assess the Marginality

- MARS-K (RWM stability code including EP effects) [Y. Liu 2010 PPCF]
 - with self-consistent approach: unstable without EP (eigen function calculated consistently)
 - with perturbative approach: unstable (first order δ W approximation)
 - growth rate

$$\gamma \sim \frac{\delta W_{\infty} + \delta W_{k}}{\delta W_{b} + \delta W_{k}} \qquad \delta W_{k} = \int dV(\xi \cdot \nabla p) \\ \int dV \left[\frac{(\omega - \omega_{rot} + \omega_{*i}....)}{\omega - \omega_{rot} - \langle \omega_{prec.} \rangle +} \right]$$

- kinetic effect:

$$\delta W_{k} = \alpha_{k} (c_{EP} \delta W_{EP} + c_{thermal} \delta W_{thermal})$$

- at present:
 - -EP: isotropic distribution

Yueqiang Liu

Experimental Condition: Unstable by Thermal Kinetic Only

DIII-D

Yuegiang Liu

Experimental Condition: Stable by Including EP Kinetic

EXPs (rotation $V_{\phi} = 16$ km/s at q=2)

• Without EP, thermal-kinetic-only unstable

$$\delta W_k = \alpha_k (c_{EP} \delta W_{EP} + c_{thermal} \delta W_{thermal})$$

 With EP-kinetic included. Exp. condition is predicted stable

$$\delta W_{k} = \alpha_{k} (c_{EP} \delta W_{EP} + c_{thermal} \delta W_{thermal})$$

(MARS-K with self-consistent approach) **Yueqiang Liu**

EP Loss by Off-axis-fishbone May Lead to RWM Onset

EXPs (rotation $V_{\phi} = 16$ km/s at q=2)

- Without EP, thermal-kinetic-only unstable $\delta W_{k} = \alpha_{k} (c_{EP} \delta W_{EP} + c_{thermal} \delta W_{thermal})$ • With EP-kinetic included. Exp. condition is stable $\delta W_{k} = \alpha_{k} (c_{FP} \delta W_{FP} + c_{thermal} \delta W_{thermal})$
- After losing EP ~10% and rotational stabilization~ 10km/s, the condition could become unstable

(MARS-K with self-consistent approach) **Yuegiang Liu**

SUMMARY: Off-axis Fishbone Mode Characteristics:

- Both "Energetic particle-driven Wall Mode (EWM)" in JT-60U and "Off-axis fishbone-driven" RWM in DIII-D have shown:
 - The initial phase is like classical fishbone:
 - Evolves with strong non-linear mode distortion
- Mode distortion coincides with the rapid increase of EP losses
 - Follows the q=2 pitch same as the EP losses
- External kink character
 - strong response to the additional n=1 external field through feedback

→A new branch of EP driven mode exists with external kink character in wall-stabilized plasmas

The theoretical work is in progress. Further experiments are required to clarify EP loss process in the EP-driven mode

SUMMARY: Impact on the RWM Stabilization:

- Both "Energetic particle-driven Wall Mode (EWM)" in JT-60U and "Off-axis fishbone-driven" RWM in DIII-D can trigger RWM.
- EP density drops ~10% and Plasma rotation drops~10 km/s in a burst
- **Significant** for the RWM stability in **low rotation plasmas**, which heavily relies on kinetic effects produced by the EP and the plasma rotation
- Rapid drop of n_{EP} and Ω_{rot} provides a **unique approach** to assess the RWM stability
 - MARS-K indicates EP contribution to RWM stabilization
 - →EP becomes a crucial factor for high β_N MHD stabilization toward steady state reactor operation

Mechanism of RWM onset is to be clarified, and control of EP-driven mode is also needed for high β_N operation

