Variation of Turbulence and Transport with the $T_{\rm e}/T_{\rm i}$ Ratio in H-Mode Plasmas

by G.R. McKee¹

with C.H. Holland², C.C. Petty³, H. Reimerdes^{4,5}, T.R. Rhodes⁶,L. Schmitz⁶, S. Smith³, I.U. Uzun-Kaymak¹, G. Wang⁶, A.E. White⁷, Z. Yan¹

¹ University of Wisconsin-Madison
² University of California -San Diego
³ General Atomics
⁴ Columbia University
⁵ University of California - Los Angeles
⁶ CRPP-EPFL, Lausanne
⁷ Massachusetts Institute of Technology

Presented at the 52nd Annual Meeting of the APS Division of Plasma Physics Chicago, Illinois

November 8-12, 2010

Overview

- Increasing T_e/T_i influences transport in L and H-mode plasmas
 - Reduces density
 - -Reduces rotation
 - -Reduces τ_{E}
- Current experiments typically operate with $T_i > T_e$
 - -Reactors/ITER will have $T_e \sim T_i$
- Previous studies in related L-mode experiments find that
 - -Transport increases with T_e/T_i , but;
 - -Long-wavelength density fluctuations relatively constant
 - -T_e fluctuations increase (CECE, A. White, PoP 2009)
- Turbulence increases significantly with T_e/T_l in H-mode plasmas
 - Contrasts with behavior in L-mode discharges
- These H-mode plasmas exhibit two core fluctuation modes
- Performed as part of the Transport Model Validation Task Force
 - Future work will compare turbulence and transport with simulations

Turbulence and Transport Response to T_e/T_i Investigated in Hybrid H-mode Plasmas

- Hybrid H-mode Plasmas
 - Long, quasi-steady (2.5 s)
 - Sawtooth-free
 - High-performance

Discharge Parameters

- $-I_{p} = 1.06 \text{ MA}$
- $-B_{T} = 1.9 T$
- q₉₅=5.9
- ITER Shape (ISS)

PCS Feedback control

- Density
- TI, Rotation (CER)

• ECH/RF increases T_e/T_i

- 3.3 MW ECH/0.8 MW RF
- 25% increase in $T_{\rm e}$
- 20% drop in $\tau_{\rm E}$

Time (ms)

GR McKee/APS/November 2010

ECH Increases Te: Impacts all Profiles

- PCS feedback of density and beams employed to minimize variation
- ~25% increase in T_e

Thermal Diffusivity Profiles

ONETWO Transport Analysis

Turbulence Measured with Beam Emission Spectroscopy

- Long-wavelength density fluctuation data acquired with highsensitivity 8x8 BES 2D array
- Highly repeatable discharges allow for diagnostic scans (r, k)

SAN DIEGO

k⊥ρ₁<3 cm⁻¹

Long discharges (2.5 s steady phase) allow for ensemble averaging to discern low amplitudes (ñ/n<0.5%) fluctuation characteristics

Fluctuation data also acquired with CECE, DBS-5, DBS-8

Long-Wavelength Density Turbulence Increases with T_e/T_i

Qualitatively similar behavior observed across radius

H-Mode Core Fluctuation Spectra Exhibit Two

- Non-ECH heated discharge has 2 frequency regions with distinct spectral and phase shift (propagation velocity) characteristics
 - Likely reflects two different modes/instabilities
 - ECH-heated discharge exhibits single mode
 - Poloidally-separated channels required to distinguish modes
 - Higher frequency mode has lower amplitude; longer correlation length

TGLF Calculations Show Lower Growth Rates at Higher $T_{\rm e}/T_{\rm l}$

- TGLF analysis with measured n, T, rotation profiles
- Mixture of ion modes at lower-k, electron modes at higher-k
 - Higher T_e/T_i discharges show significantly higher growth rates at higher k (0.6 < $k_{\perp} \rho_s$ <10)

ρ**=0.6**

See C. Holland, NI2.005, Wed.

GR McKee/APS/November 2010

L-Mode and H-mode (Hybrid) Discharges Exhibit Different Turbulence Response to T_e/T_i Variation

- L-mode: long-wavelength density fluctuations exhibit small change in magnitude with $T_{\rm e}/T_{\rm i}$
 - Spectral shape change reflects local changes in ExB Doppler shift
 - Te-fluctuations increase (CECE)
- H-mode: long-wavelength density fluctuations increase measurably in magnitude with T_e/T_i

Fluctuation Variation with T_e/T_i Different for L-Mode & H-mode

- Hybrid H-mode discharges exhibit a clear 30-40% increase in low-k density fluctuation amplitude with increasing T_e/T_i
- L-mode plasmas exhibit small, if any, increase with T_e/T_i

- Consistent with previous and recent experiments L-mode

Summary

- Turbulence and transport response to variation in T_e/T_i examined in Hybrid H-mode plasmas
 - $T_e/T_i < 1$, increased by 25% via 3.3 MW ECH + RF heating
 - 20% reduction in $\tau_{\rm E}$
- Low-k density turbulence increases by 25-40% with $T_{\rm e}/T_{\rm i}$
 - Related L-mode experiments show much small increase in \tilde{n}/n with T_e/\tilde{T}_i , but T_e/T_e increases significantly
- Core H-mode turbulence exhibits signature of two distinct turbulence bands at different (but overlapping) frequency/ wavenumber ranges
 - Mode structure varies appreciably with T_{e}/T_{i}
- Initial TGLF growth rate calculations do not appear consistent
 - But: higher k growth rates increase significantly at higher T_e/T_l
- Future analysis with nonlinear simulations (e.g., GYRO) for model validation studies

