Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D,* G.J. Kramer, R. Budny, R. Nazikian, PPPL; W.W. Heidbrink, UC-Irvine; T. Kurki-Suonio, A. Salmi, Helsinki U.; M.J. Schaffer, M.A. Van Zeeland, GA; K. Shinohara, JAEA; J.A. Snipes, ITER Org.; D. Spong, ORNL – The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200°C were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields don’t affect the fast-ion confinement in a harmful way which is good news for ITER.

*Work supported in part by US DOE under DE-AC02-09CH11466, SC-G903402, DE-FC02-04ER54698, & DE-AC05-00OR22725.