Generation and stability of runaway electrons during rapid-shutdown in DIII-D

by Alex N. James

with E. M. Hollmann¹, V. A. Izzo¹, G. R. Tynan¹, D. A. Humphreys², P. B. Parks², E. J. Strait², J. C. Wesley²

¹UC San Diego ²General Atomics

Presented at the 52nd Annual Meeting of the APS Division of Plasma Physics

Chicago, Illinois November 8-12, 2010

• Disruption mitigation schemes fail to prevent runaway electron generation in present machines

- Runaway generation is poorly understood by simplistic analysis, so more sophisticated efforts are necessary
- Thorough understanding of runaway generation and stability will lead to new solutions to these problems

- Runaway electrons are observed before current quench loop voltages
- Inclusion of the often neglected inductance drop reveals an early and large loop voltage term
- Much runaway seed impacts the vessel wall in varying quantities dependent on the plasma shape
- Runaway current eventually terminates with possible signatures of kink instability

Experiments feature rapid shutdown of two different shapes using argon 'killer pellets'

- Begin with a stable plasma
- Inject a cryogenic argon killer pellet
- Runaway generation occurs, with avalanche and plateau
- Limited shape is good for studying runaway generation, bad for reactor operation where runaways are undesirable

High energy runaway electrons are generated before current quench during rapid-shutdowns

- A new hard x-ray sensing scintillator array observes runaway electron emissions [James RSI 2010]
- Plasma control enables
 >150ms confinement!
 [Humphreys U04.00001]

BGO scintillators with various lead shield thickness measure average runaway energy

High energy runaway electrons are generated before current quench during rapid-shutdowns

Loop voltage from current quench occurs after runaways appear

 Begin with simple estimate of loop voltage by extending the last known inductance before shutdown

$$V_{loop} = -L\frac{dI}{dt}$$

Reconstructed inductance reveals an earlier loop voltage term

- Begin with simple estimate of loop voltage by extending the last known inductance before shutdown
- Improve by calculating inductance from a reconstruction
- Inductance drop term
 OCCURS earlier
 and is larger in
 magnitude than current
 drop term

$$-\frac{d\Phi}{dt} = -\frac{d}{dt}(LI) = V_{loop} = -L\frac{dI}{dt} - I\frac{dL}{dt}, \quad L = \frac{1}{\mu_0 I^2} \int B_p^2 dV$$

Improved disruptions diagnostics of density and temperature necessary to calculate seed current

- Dreicer described how electrons exceeding a critical velocity can runaway
- Temperature and density are volume and line averaged 0D measurements
- Loop voltage term only revealed by invoking 2D analysis

$$v_{Dr} = \sqrt{\frac{ne^4 ln\Lambda}{4\pi\epsilon_0^2 m_e E}}, \quad E_{Dr} = \frac{e^3 ln\Lambda n_e}{4\pi\epsilon_0^2 T_e}$$

$$3 \int_{0}^{1} \frac{T_e \text{ fit [keV]}}{T_e \text{ data}}, \quad \frac{n_e [10^{15} \text{ cm}^3]}{150} \int_{0}^{1} \frac{E_{Dr}}{(V/\text{m}]}, \quad \frac{E_{Dr}}{(Ldl/dt + IdL/dt)/2\pi R}, \quad \frac{150}{2} \int_{0}^{1} \frac{E_{Dr}}{2001}, \quad \frac{(Ldl/dt + IdL/dt)/2\pi R}{2003}, \quad \frac{1}{2.004}, \quad \frac{1}{2.005}$$
time [s]

Voltage spike during thermal quench appears to exceed Dreicer field, so predicted seed current is non-physically large.

Improved measurements are necessary for a realistic calculation of runaway seed currents!

Confined seed current is inferred from avalanche theory

- Assumed Z=1, neglected small critical field for avalanche
- Only calculates CONFINED seed current, not lost seed
- Diverted shape converts smaller seed to larger plateau compared with limited shape

$$I_{seed} = I_{RE} \ exp\left(-\frac{e}{m_e c \overline{p}} \int_{t_0}^{t_{plateau}} E dt\right)$$
 normalized momentum

Hard x-ray measurements indicate more seed runaways escape in diverted shape

- Prompt loss hard x-ray bursts are reduced in limited shape compared with diverted shape
- Diverted shape loses a greater number of seed runaways to wall surfaces
- Limited shape has improved confinement?

Integrated scintillator signals support increased seed confinement for limited shape

- Integrated scintillator signals are proportional to lost runaway seed current
- Again, calculated seed current represents only confined runaways
- Diverted shape has greater seed loss compared to confined seed, while limited shape has greater confined seed compared to loss

These experimental observations are supported by NIMROD simulations

 NIMROD simulations indicate decreased island overlap in limited shape compared with diverted shape reduces magnetic stochasticity

See also [Izzo UP9.00059]

 Runaway electrons on closed surfaces (colored patches) remain confined and can avalanche

Runaway plateau eventually terminates with toroidally asymmetric hard x-ray emission

- HXR asymmetry shows apparent n=1-2 progression
- Edge safety factor drops
- Possible signatures of kink instability resulting from vertical displacement?

- Runaway electrons are observed before current quench loop voltages
- Inclusion of the often neglected inductance drop reveals an early and large loop voltage term
- Much runaway seed impacts the vessel wall in varying quantities dependent on the plasma shape
- Runaway current eventually terminates with signatures of kink instability and VDE

