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* Disruption mitigation schemes
fail to prevent runaway electron
generation in present machines

* Runaway generation is poorly understood by
simplistic analysis, so more sophisticated efforts are
necessary

* Thorough understanding of runaway generation and
stability will lead to new solutions to these problems
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* Runaway electrons are observed before current
guench loop voltages

* Inclusion of the often neglected inductance drop
reveals an early and large loop voltage term

* Much runaway seed impacts the vessel wall in
varying quantities dependent on the plasma shape

* Runaway current eventually terminates with
possible signatures of kink instability
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Experiments feature rapid shutdown of two different

shapes using argon ‘killer pellets’

diverted

limited

number of shots
-
N

® Begin with a stable plasma
® Inject a cryogenic argon killer pellet
®* Runaway generation occurs, with avalanche and plateau

® Limited shape is good for studying runaway generation,
bad for reactor operation where runaways are undesirable
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High energy runaway electrons are generated

before current quench during rapid-shutdowns
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High energy runaway electrons are generated

before current quench during rapid-shutdowns
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Loop voltage from current quench occurs

after runaways appear

TQ CQ Runaway plateau
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Reconstructed inductance reveals

an earlier loop voltage term

TQ CQ Runaway plateau
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Improved disruptions diagnostics of density and

temperature necessary to calculate seed current

® Dreicer described how electrons \/ netln\ eSlnAn,
exceeding a critical velocity can ~ UDr = 5 7 Dr — 5
runaway Amegmels dmef 1e

| 3r \Tfit[keV] [1(')15(:153]

® Temperature and density are i \ S I
volume and line averaged 0D 0L ey .
measurements 150 [V/m] | |

® Loop voltage term only revealed i
by invoking 2D analysis 0 YT
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Voltage spike during thermal quench appears to exceed Dreicer
field, so predicted seed current is non-physically large.

Improved measurements are necessary
for a realistic calculation of runaway seed currents!
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Confined seed current is inferred from avalanche theory

® Assumed Z=1, neglected 50 ¢
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Hard x-ray measurements indicate more seed runaways

escape in diverted shape

® Prompt loss hard x-ray bursts

are reduced in limited shape 10°
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Integrated scintillator signals support increased seed

confinement for limited shape

® Integrated scintillator

. . 1 K—
signals are proportional S
to lost runaway seed | diverted
current o) X
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These experimental observations are supported by

NIMROD simulations

®* NIMROD simulations indicate
decreased island overlap in
limited shape compared with
diverted shape reduces
magnetic stochasticity

NIMROD diverted NIMROD limited

See also [lzzo UP9.00059]

® Runaway electrons on closed
surfaces (colored patches)
remain confined and can
avalanche

® How does the duration of this
stochasticity scale to ITER?
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Runaway plateau eventually terminates with toroidally

asymmetric hard x-ray emission
TQ CQ Runaway plateau
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* Runaway electrons are observed before current
guench loop voltages

* Inclusion of the often neglected inductance drop
reveals an early and large loop voltage term

* Much runaway seed impacts the vessel wall in
varying quantities dependent on the plasma shape

* Runaway current eventually terminates with
signhatures of kink instability and VDE
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