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Generation and stability of runaway electrons during
rapidshutdown in DIIID
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Motivation

• Disruption mitigation schemes
fail to prevent runaway electron
generation in present machines

• Runaway generation is poorly understood by
simplistic analysis, so more sophisticated efforts are
necessary

• Thorough understanding of runaway generation and
stability will lead to new solutions to these problems
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Outline

• Runaway electrons are observed before current
quench loop voltages

• Inclusion of the often neglected inductance drop
reveals an early and large loop voltage term

• Much runaway seed impacts the vessel wall in
varying quantities dependent on the plasma shape

• Runaway current eventually terminates with
possible signatures of kink instability
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Experiments feature rapid shutdown of two different
shapes using argon 'killer pellets'

• Begin with a stable plasma
• Inject a cryogenic argon killer pellet
• Runaway generation occurs, with avalanche and plateau
• Limited shape is good for studying runaway generation,

bad for reactor operation where runaways are undesirable
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• A new hard xray sensing
scintillator array observes
runaway electron emissions
[James RSI 2010]

• Plasma control enables
>150ms confinement!
[Humphreys U04.00001]
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High energy runaway electrons are generated
before current quench during rapidshutdowns
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High energy runaway electrons are generated
before current quench during rapidshutdowns

• A new hard xray sensing
scintillator array observes
runaway electron emissions
[James RSI 2010]

• Signatures of high energy
runaways appear BEFORE
current quench begins
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Loop voltage from current quench occurs
after runaways appear

Vloop = −LdI
dt

− I
dL

dt
, L =

1

µ0I2

∫
B2
pdV

• Begin with simple
estimate of loop voltage
by extending the last
known inductance before
shutdown
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Reconstructed inductance reveals
an earlier loop voltage term

• Begin with simple
estimate of loop voltage
by extending the last
known inductance before
shutdown

• Improve by calculating
inductance from a
reconstruction

• Inductance drop term
occurs earlier
and is larger in
magnitude than current
drop term
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Vloop = −LdI
dt

− I
dL

dt
, L =

1

µ0I2

∫
B2
pdV−dΦ

dt
= − d

dt
(LI) =
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Improved disruptions diagnostics of density and
temperature necessary to calculate seed current
• Dreicer described how electrons

exceeding a critical velocity can
runaway

• Temperature and density are
volume and line averaged 0D
measurements

• Loop voltage term only revealed
by invoking 2D analysis
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Voltage spike during thermal quench appears to exceed Dreicer
field, so predicted seed current is nonphysically large.
Improved measurements are necessary
for a realistic calculation of runaway seed currents!

vDr =

√
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4πε20meE
, EDr =
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Confined seed current is inferred from avalanche theory

• Assumed Z=1, neglected
small critical field for
avalanche

• Only calculates CONFINED
seed current, not lost seed

• Diverted shape converts
smaller seed to larger
plateau compared with
limited shape 0 100 200 300 400 500
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Hard xray measurements indicate more seed runaways
escape in diverted shape
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• Prompt loss hard xray bursts
are reduced in limited shape
compared with diverted shape

• Diverted shape loses a greater
number of seed runaways to
wall surfaces

• Limited shape has improved
confinement?
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Integrated scintillator signals support increased seed
confinement for limited shape

• Integrated scintillator
signals are proportional
to lost runaway seed
current

• Again, calculated seed
current represents only
confined runaways

• Diverted shape has
greater seed loss
compared to confined
seed, while limited shape
has greater confined
seed compared to loss
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These experimental observations are supported by
NIMROD simulations

NIMROD diverted NIMROD limited

• NIMROD simulations indicate
decreased island overlap in
limited shape compared with
diverted shape reduces
magnetic stochasticity
See also [Izzo UP9.00059]

• Runaway electrons on closed
surfaces (colored patches)
remain confined and can
avalanche

• How does the duration of this
stochasticity scale to ITER?
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Runaway plateau eventually terminates with toroidally
asymmetric hard xray emission
• HXR asymmetry shows

apparent n=12 progression
• Edge safety factor drops
• Possible signatures of kink

instability resulting from
vertical displacement?
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Summary

• Runaway electrons are observed before current
quench loop voltages

• Inclusion of the often neglected inductance drop
reveals an early and large loop voltage term

• Much runaway seed impacts the vessel wall in
varying quantities dependent on the plasma shape

• Runaway current eventually terminates with
signatures of kink instability and VDE
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