Geodesic Acoustic Mode Measurements in DIII-D,* J.C. Hillesheim, W.A. Peebles, T.A. Carter, T.L. Rhodes, L. Schmitz, UCLA; and the DIII-D Team, GA — Geodesic acoustic modes (GAMs) are nonlinearly driven, axisymmetric (m=0, n=0) ExB flows, which may play an important role in establishing the saturated level of turbulence in tokamaks. Doppler backscattering (DBS) measures the flow of turbulent structures and the level of intermediate-k ($k\rho_s\sim1-4$) density fluctuations. Measurements have been made with multichannel DBS systems at toroidal locations separated by 180°. Both linear characteristics of the mode and its nonlinear interactions have been studied. Observations include cases where the GAM exists as a persistent mesoscale structure, coherent over $\sim1/3$ of the minor radius; measurements in repeat shots indicate a poloidal dependence of the GAM’s radial wavenumber; and bicoherence analysis between the toroidally separated DBS systems has revealed a relationship between the GAM and low frequency zonal flows.

*Supported by the US Department of Energy under DE-FG02-08ER54984, DE-FG03-01ER54615, and DE-FC02-04ER54698.