Finite Orbit Monte-Carlo Simulations of FW Heating Discharges in DIII-D, NSTX and ITER

by

M. Choi

in collaboration with

D.L. Green, V.S. Chan, W.W. Heidbrink, C.M. Muscatello, D. Liu, L.L. Lao, R.I. Pinsker, and the RF-SciDAC Team

1General Atomics
2Oak Ridge National Laboratory
3University of California, Irvine
4University of Wisconsin, Madison

Presented at the
52nd Annual Meeting of
the APS Division of Plasma Physics
Chicago, Illinois

November 8-12, 2010
Outline

• Synthetic diagnostic results of finite orbit Monte-Carlo coupled by full wave code in DIII-D and NSTX HHFW heating discharges reasonably reproduce measurements
 – Outward radial shift
 – Fast ion spectra

• Preliminary simulation in ITER suggests that finite orbit effect may also significantly modify fast ion distribution in velocity space
Zero-Orbit Width Simulation Does Not Reproduce Outward Shift of Measured FIDA Signals in DIII-D

DIII-D FW discharge #122993
W.W. Heidbrink PPCF 49 (2007)

- CQL3D to include finite orbit effect is underway
- Similar discrepancy in NSTX HHFW discharges (D. Liu, PPCF 52 (2010))
- This study is aimed at resolving this discrepancy with finite orbit width effect

FIDA Signals vs. \(R_{maj} \) (cm)

- CQL3D/GENRAY
- Measurement

\(5\Omega_D \) and \(6\Omega_D \)
For This Purpose, ORBIT-RF is Coupled with AORSA in a Self-Consistent Way (RF SciDAC)

E.F. Jaeger
POP 9 (2002)

AORSA

Linear full wave code

Wave fields

D.L. Green,
18th Topical Conf., in RF Power in Plasma (2009)

P2f

Fast ion distribution

ORBIT-RF

Monte-Carlo code
Increased Neutron Rates During FW Heating Indicate Absorption of FW By Beam Fast Ions

NSTX #128739

DIII-D #122993

Time (s)

0.1 0.2 0.3 0.4

NB Power (MW)

FW Power (MW)

Density (10^{19} m$^{-3}$)

T_e (keV)

Neutrons (10^{13} s$^{-1}$)

Time (s)

1 2 3 4

NB Power (MW)

FW Power (MW)

Density (10^{19} m$^{-3}$)

T_e (keV)

Neutrons (10^{13} s$^{-1}$)
NSTX: Good Agreements Are Obtained in Spatial Profile and Spectra with No FW Heating

- NSTX NB discharge #128742
 \[P_{NB} = 2.0 \text{ MW}, \ E_{\text{inj}} = 65 \text{ keV} \]

\[\int_{30\text{keV}}^{60\text{keV}} E_{\lambda} dE_{\lambda} \]

At \(R = 112 \text{ cm} \)

 measurement

Diagram:
- Magnetic axis
- Normalized FIDA Signals
- \(R_{\text{maj}} \) vs. \(E_{\lambda} \)
- FIDA Signals (a.u.)

Legend:
- Measurement
- ORBIT simulation
NSTX: FW Heating Simulation Predicts Enhanced Outward Shifts Compared to Measured Signals

- **NSTX NB discharge #128742**

 \[P_{NB} = 2.0 \text{ MW}, \ E_{inj} = 65 \text{ keV} \]

- **NSTX NB+HHFW #128739**

 \[P_{FW} = 1.0 \text{ MW}, 30 \text{ MHz} \]

The graphs show the normalized FIDA signals as a function of major radius \(R_{maj} \) for each discharge condition. The simulations and measurements are compared, with the simulation results showing an enhanced outward shift compared to the measured signals.
DIII-D: Qualitative Agreement is Obtained in Spatial Profile of FIDA Signals for #122993

DIII-D #122993

- $P_{ICRF} = 1.0$ MW, 60 MHz
- $\int_{45keV}^{70keV} E_\lambda dE_\lambda$
- Measurement
- ORBIT-RF/AORSA
- $5 \Omega_D$
- $6 \Omega_D$

DIII-D #141187

- $P_{FW} = 0.7$ MW, 60 MHz
- ORBIT-RF/AORSA prediction
- $\int_{45keV}^{70keV} E_\lambda dE_\lambda$
- Vertical view
- Comparison with FIDA is underway
- $4 \Omega_D$

Vertical

- $\int_{30keV}^{60keV} E_\lambda dE_\lambda$
- Tangential
ITER: Finite Orbit Effect Appears to Average Out Anisotropic Distribution

- D(10%) minority fundamental harmonic heating scenario
- $n_e(0): 7.3 \times 10^{13} \text{ cm}^{-3}$, $T_e(0): 24 \text{ keV}$, $T_T(0): 25 \text{ keV}$, $T_D(0): 25 \text{ keV}$
- $f_{\text{ICRF}}: 40 \text{ MHz}$ $P_{\text{ICRF}}: 20 \text{ MW}$ $n_\varphi: -35$

![Diagram showing zero-orbit width and finite orbit width](image-url)
Summary

• ORBIT-RF/AORSA provides a comprehensive tool to model FW heating scenarios with finite orbit width effects

• Simulations reasonably reproduce spectra and outward radial shifts of measured FIDA signals in DIII-D and NSTX FW heating experiments with NB injection

• Finite orbit width effect may significantly modify fast ion distribution in ITER