### Scaling of the H-Mode Pedestal and ELM Characteristics with Gyro-Radius on the JET and DIII-D Tokamaks

DIII-D

#### by T.H. Osborne and M.N.A. Beurskens

with

L. Horton, L. Frassinetti, R. Groebner, A. Leonard, P. Lomas, I. Nunes, S. Saarelma, P. Snyder, I. Balboa, B. Bray, K. Crombé, J. Flanagan, C. Giroud, E. Giovannozzi, M. Kempenaars, N. Kohen, A. Loarte, J. Lönnroth, E. de la Luna, G. Maddison, C. Maggi, D. McDonard, G. McKee, P. Pasqualotto, G. Saibene, R. Sartori, E. Solano, W. Suttrop, E. Wolfrum, M. Walsh, Z. Yan, L. Zabeo, D. Zarzoso and the JET-EFDA, DIII-D, and AUG teams

Presented at

Fifty First APS Meeting of the Division of Plasma Physics Atlanta, Georgia November 2–6, 2009 <image>



JET



#### **Goals of the Experiments**

- Determine the scaling of the edge transport barrier (ETB) width, w/a, and ELM size with normalized gyro radius,  $\rho_* = \rho/a$ .
  - Since  $\rho_*^{\text{ITER}} < \text{current tokamaks } (\rho_*^{\text{ITER}} / \rho_*^{\text{JET}} < 0.5) \Rightarrow w/a \propto \rho_*^X, X > 0 \text{ is undesirable for ITER } (Q~T^{\text{PED}})$ 
    - X>0 suggested by some theoretical arguments and experiments:  $V_{ExB}$  turbulence suppression:  $\gamma_{DW} \sim c_s / a = (V_{ExB})' \Longrightarrow w / a \sim \rho_*^{1/2}$
  - Vary  $\rho_*$  keeping  $\beta$ ,  $\upsilon_*$ , q,  $T_e/T_i$ , M, plasma shape fixed  $\Rightarrow \rho_* \propto (aB^{4/5})^{-5/6}$

Examine the role of the edge particle source in ETB structure and ELMs

- With all pedestal dimensionless parameters matched "plasma physics"  $\Rightarrow w \propto a$ neutral source  $\Rightarrow w = \lambda_n \propto 1/n \propto a^2$ 





### ${\rho_*}^{\text{PED}}$ Scans Carried Out in Both High and Low Triangularity Shapes



• Shapes normalized to major radius, R





# Both $n_e$ and $T_e$ Widths are Relatively Unchanged Over the Factor of 4 Range of $\rho_{\ast}$



### Comparison with EPED1 Model (Snyder<sup>[1]</sup> TP8.00018) Suggests a Residual Inverse ρ<sub>\*</sub> Dependence



### T<sub>e</sub> Profiles Match with all Dimensionless Parameters Matched but n<sub>e</sub> Profiles Suggest Particle Source Effect



- At dimensionless parameter match
  - T<sub>e</sub> profiles matched
  - n<sub>e</sub> profile in DIII-D discharge is shifted outward relative to T<sub>e</sub> profile



- Top of n<sub>e</sub> pedestal shifts inward as MFP,  $\lambda_n/a \propto 1/(an_e)$ , increases on D3D
- Trends offset at different  $\delta$  on D3D
- JET has larger normalized shift and no obvious n<sub>e</sub> dependence



Variation in  $n_e$  Profile Shift with  $\delta$  and Tokamak Suggests Variation in Poloidal Distribution of Neutral Source



## ELM Losses Increase Strongly with $\rho_{*}\,$ on DIII-D but not on JET



NATIONAL FUSION FACILITY

- ELM losses increase strongly with ρ<sub>\*</sub> on DIII-D
- Losses match at identity point but trend with ρ<sub>\*</sub> weakly reverses in JET
- ELM loss at high ρ<sub>\*</sub> on DIII-D exceed value expected from υ<sub>\*</sub> scaling
- Large ELM loss at high
  ρ\* on DIII-D are
  correlated with
  increased ELM depth
  and duration



### High Edge p' Region and PB Eigenmode are Wider Due to Density Profile Shift at High $\rho_*$ but Change is Modest Compared to ELM Size Increase





- The n<sub>e</sub> profile shift, possibly related to  $\lambda_n$  effects, results in narrowing of width of the high p' region at small  $\rho_*$  (high n<sub>e</sub>)
- A modest increase in PB eigenmode width is associated with expansion of high p' region



#### **Summary Conclusion**

- $w_{Te} \propto a$  at matched dimensionless pedestal parameters  $\Rightarrow$  plasma physics and not neutrals set  $w_{Te}$
- Outward shift of  $n_e$  profile at high  $n_e$  (small  $\rho_*$ ) consistent with particle source affect on  $n_e$  profile
  - Fitting JET results into this picture requires main chamber dominated particle source in JET
- $w_{Te}$  and  $w_{ne}$  weakly decreasing through a factor of 4 variation in  $\rho_*$ :  $w_{Te}(\psi_N) \propto \rho_*^{-0.17}$ ,  $w_{ne}(\psi_N) \propto \rho_*^{-0.10}$ 
  - Combining a  $\beta^{PED}$  scan with the  $\rho_*$  scan recovers the EPED1  $(\beta_P^{PED})^{0.5}$  scaling but suggests a residual  $\rho_*$  dependence:  $w_{Te} \propto (\beta_P^{PED})^{0.5} \rho_*^{-0.25}$
- ELM energy loss increases strongly with  $\rho_{*}$  on DIII-D but is weakly decreasing with  $\rho_{*}$  on JET
  - Large losses at high  $\rho_*$  on DIII-D > 2× Loarte v<sub>\*</sub> scaling
  - ELM size and ELM depth correlated with PB eigenmode width but change in PB width is small compared to ELM size change



