Understanding and Predicting the Dynamics of Tokamak Discharges During Startup and Rampdown

by G.L. Jackson, D.A. Humphreys, A.W. Hyatt, J.A. Leuer, J. Lohr, T.C. Luce, P.A. Politzer, M.A. Van Zeeland, J.H. Yu,* and T.A. Casper[†]

*University of California-San Diego [†]Lawrence Livermore National Laboratory

Presented at Fifty-First APS Meeting of the Division of Plasma Physics Atlanta, Georgia

November 2-6, 2009

Transient Phases (Startup and Rampdown) Place Unique Constraints on ITER, Requiring Improved Understanding

ITER CHALLENGE

- Low inductive electric field and large vessel currents for startup
- Limited Ohmic power for burnthrough phase
- Power supplies limit range of current density profiles
- Minimize flux consumption
- Control heat flux to sensitive areas
- Discharges must operate well within stability limits

DIII-D EXPERIMENTS HAVE INVESTIGATED ALL PHASES OF AN ITER DISCHARGE

- Time scaled by resistive diffusion time (\approx 50:1)
- Size scaled by machine dimensions of ITER & DIII-D (3.6:1)
- Normalized parameters (I_p/aB, ℓ_i , β_N , and shape) are similar

DIII-D Has Experimentally Simulated All Phases of the ITER Scenario in a Single Discharge

- EC assist allowed robust rampup for $E_{\phi} \ge 0.21 \text{ V/m}$
- ITER Baseline H-mode (scenario 2) achieved after OH rampup
 Doyle UO4-15, Th. pm
- ECH produced reliable breakdown and burnthrough of low Z impurities
- No additional flux consumption during rampdown

Strike points held fixed during aperture reduction

• ITER Rampdown scenarios

Startup studies and modeling

Dynamics of breakdown and burnthrough

Conclusions

RAMPDOWN

Controlled Termination (Rampdown) of Burning Plasmas in Necessary to Mitigate Heat Fluxes and Mechanical Forces

• Safe and controlled discharge termination becomes increasingly important.

Up to 750 MJ is available in ITER (baseline scenario)

Rampdown challenge for ITER

Additional flux and solenoid current limit burn duration

Slow density decay may be near density limit

Strike points remain in divertor region with elongation ramp

Vertical instabilities

P. Politzer (Th. pm) U04-9

The ITER Rampdown Phase has been Experimentally Simulated in DIII-D with Similar κ , β_{p} , ℓ_{i} , and q_{95}

Rampdown Rate Scan Indicates Need to Ramp Faster

- Current ramp rate in both H-mode and L-mode phases must be faster than the scaled ITER reference case (black)
 - To avoid further increase of the inner coil currents (limit to burn duration in ITER)
- Too fast leads to disruption
- Flux consumption is not a problem
 - $-d|\langle \Psi \rangle|/dt always < 0$

P. Politzer

Full-bore Rampdown Evaluated; Encountered Stability and Density Control Problems

Rampdown without Vertical Instabilities Requires Temporal Changes in the Control Algorithm

 Successful rampdown to Ip < 0.14 MA (<1.4 MA ITER specified value)

 Plasma Control System (PCS) algorithm changed at 5.5 s for low elongation and z_{cur}

 Vertically stable until ∆Z_{max} decreases below DIII-D control limit (set by system noise)

Controlled Termination (Rampdown) of Burning Plasmas in Necessary to Mitigate Heat Fluxes and Mechanical Forces

• Safe and controlled discharge termination becomes increasingly important.

Up to 750 MJ is available in ITER (baseline scenario)

Rampdown challenge for ITER	DIII-D experimental approach
Additional flux and solenoid current limit burn duration	Vary rampdown rate
Slow density decay may be near density limit	Vary elongation ramp
Strike points remain in divertor region with elongation ramp	Develop algorithms for fixed strike points at low I _p and elongation
Vertical instabilities	Quantify stablility boundary and optimize vertical control

RAMPUP

ITER challenge

Heat flux on poloidal limiters

Current profile during rampup

Different current profiles for advanced scenarios

Minimize flux

Extrapolate DIII-D results to ITER

DIII-D has Evaluated the ITER Baseline Startup Scenario and Developed an Improved "Large-bore" Startup

- ℓ_i(3) (large-bore, red) is close to
 ITER design range
- Higher qmin (delayed sawteeth) with largebore scenario
- Energy to LFS limiters reduced with earlier divert time t = 800 ms

To Remain within the ITER Design Range, ℓ_i can be Controlled by varying the Ip Ramp Rate

- ITER Poloidal Field (PF) Coil constraints place limitations on l_i
 - Specific ℓ_i may be required (within PF constraints) for advanced inductive scenarios
- Feedback control of Ip can produce desired ℓ_i target
 - Plasma Control System (PCS) calculates $\ell_i(3)$ realtime (rtEFIT)
 - $\ell_i(3)$ compared to target and PCS computes an error signal
 - I controlled with Ohmic power supply as the actuator

Feedback control achieved over ITER design range

Flux Consumption is Reduced $\approx 20\%$ with Modest Addition of Auxiliary Heating in Large-bore Startup

Benchmarking of DIII-D Experimental Results with Transport Models is Important to Predict ITER Performance

- Corsica equilibrium and transport code calculates $j(\psi)$ in 2 ways
 - 1. Constrained P. Pressure profiles derived from n_e and T_e at each time step
 - Used to verify code is working properly
 - 2. Transport. Evolved using ITER transport coefficients
 - Initial conditions determined from experimental data
- Coppi-Tang transport model
 - Same coefficients as in ITER modeling (transport mode)
 - Plasma current and T_e agree with data
 - Internal inductance is higher
- TRANSP modeling also benchmarks DIII-D results (Budny, JP8.00102)

Corsica Transport Modeling During Rampup Properly Evolves $T_e(0)$ and q_0 , but Current Profile Evolution Does Not Agree

DIII-D has Explored Rampup Scenarios to Address ITER Needs

ITER Challenge	ITER Small bore scenario	DIII-D experimental approach
Heat flux on poloidal limiters	High heat flux near engineering limits	Divert earlier in rampup
Current profile during rampup	High ℓ_i near vertical control limits	Higher volume (large-bore) reduces l _i
Different current profiles for advanced scenarios		ℓ_{i} feedback using I _p ramp rate
Minimize flux		Auxiliary heating investigated
Extrapolate DIII-D results to ITER		Corsica benchmarking of DIII-D experiments

BREAKDOWN AND BURNTHROUGH

Normal Ohmic Breakdown in DIII-D Occurs Near the High Field Side

- Ohmic breakdown at 0.42 V/m
 - ITER requires 0.3 V/m
- Breakdown is near inner wall even when field nulls are on HFS

G.L. Jackson/APS-DPP/Nov 2009

133-09/GLJ/jy

Plasma Formation and Evolution is Observed by Fast Camera, Viewing C^{III} Emission

-9.3 ms, 1.9 kA, 0 V

-4.3 ms, 5.6 kA, 0.6 V

+4.0 ms, 25 kA, 2.6 V

$$\begin{split} &\mathsf{R}_{IW}(midplane) = 1.02 \ m \\ &\mathsf{R}_{X2} = 1.64 \ m \\ &\mathsf{R}_{OW}(midplane) = 2.36 \ m \\ &\mathsf{B}_{\varphi} = 1.9 \ \text{T}, \ V_L = 3 \ \text{V}, \ \mathsf{B}_{V,pgm} = -30 \ \text{G} \\ &\mathsf{C}^{III}_{ionization} = 48 \ \text{eV} \\ &\mathsf{C}^{III}_{burnthrough} \approx 16\text{-}24 \ \text{eV} \\ &\mathsf{135899} \end{split}$$

J.H .Yu

ECH Allows Breakdown to Initiate Near the Vessel Center and Initially Expand Outward

Abel Inverted (z=0)

- Abel inversion shows plasma expansion at nearly constant velocity
- $v_{expansion} \approx 50 \text{ m/s} (P_{EC} = 1 \text{ MW})$ Expansion is a function of heating power and T
 - 90 m/s for $P_{FC} = 2 MW$
- Breakdown initiates near the 2^{nd} harmonic resonance (R_{x2})
- During the Ohmic heating phase, plasma expands inwards in discrete steps

Low Inductive Volage Startup (0.3 V/m) is Optimized with Vertical Field

- Oblique EC launch (required for ITER) is effective when vertical field and prefill are optimized
- Low E_φ startup in helium (0.3 V/m) also achieved

Burnthrough of Low Z Impurities is More Prompt and Reproducible with EC Assist

Plasma Initiation with EC Assist is Robust and Reproducible, but the Dynamics are More Complex than for Ohmic Alone

- Breakdown is prompt with 1 MW of ECH
 - 110 GHz, 2nd harmonic X-mode
 - Occurs near the EC resonance radius
 - Plasma expands outward due to **ExB** force
- Additional vertical field improves the EC breakdown
 - Even though field line connection length, $L_{R_{\rm X2}}$ wall is reduced
- Noninductive toroidal current (≤ 5 kA) can provide a target for the inductive phase
 - may reduce flux consumption in ITER
- Burnthrough of low Z impurities is faster with ECH
- Startup obtained with E_{d} as low as 0.21 V/m
 - Below the ITER requirement (0.3 V/m)

Conclusions

- All phases of an ITER discharge have been experimentally simulated in DIII-D
- Rampdown within the ITER scenario has been demonstrated to <0.1 MA without disruptions (I_{ITER eqiv.} < 1 MA)
 - ITER rampdown scenario tested, and improved rampdown developed

Rampup (ITER 15 MA scenario, I/aB = 1.42) successfully achieved

- Improved "large-bore" startup reduced heat flux to poloidal limiters
- ℓ_i feedback demonstrated
- Flux consumption reduced by 20% with auxiliary heating
- Corsica modeling has benchmarked DIII-D rampup phase

• Two types of low inductive voltage startup investigated

- Ohmic startup initiates on the HFS with $E_{\phi} \ge 0.42$ V/m
- EC assisted startup achieved, $E_{\phi} \ge 0.21 \text{ V/m}$

• EC assisted startup represents a different startup scenario

- Breakdown and burnthrough robust and reproducible
- May reduce flux consumption in ITER

