Runaway Electron Confinement in MHD Disruption Mitigation Simulations

V.A. Izzo,¹ G. Olynyk,² D.G. Whyte,² E.M. Hollmann,¹ A.N. James,¹ J.C. Wesley³ ¹UCSD • ²MIT PSCF • ³GA

> APS-DPP 2009 Atlanta, GA

We want to control runaway electron (RE) confinement during DIII-D disruptions

- In experiments, two runaway loss events are observed, well separated in time
- Prompt loss at start of current quench to the divertor
- Late-time loss of REs to main chamber

Question:

Can the application of (n>0) perturbing Bfields degrade runaway electron (RE) confinement during the current quench, and prevent an exponentially growing RE beam?

Answer:

Simulations suggest n=3 fields *improve* RE confinement during <u>current quench</u>

Current quench is modeled with NIMROD

• NIMROD 3D MHD code includes KPRAD modeling for impurity radiation/ionization

• Runaway electron confinement "diagnostic" runs concurrently with NIMROD, integrates single particle orbits for hundreds of fast electron. Four equations (3+1) for space and (parallel) velocity include <u>curvature</u>, grad-B, and ExB drift.

• Applied perturbing fields with n=3 toroidal symmetry produced by DIII-D I-Coils are included in the simulations. Both "even" and "odd" I-Coil spectra are simulated, referring to the relative parity of 2 rows of coils.

"Ar pellet" simulations show MHD event part way into the current quench

Total radiated energy in simulation agrees well with experiment

6 of 12

Key Result: NIMROD simulations find that n=3 fields *enhance* RE confinement

• In each case, 239 fast electrons were launched from identical starting points at t=0. Prompt loss to divertor occurs during MHD phase. Late loss is to main chamber.

Confinement is better with even or odd I-Coil fields.

I-Coil fields alter details of the MHD crash, amplitudes are quite similar

I-Coil fields alter details of the MHD crash, amplitudes are quite similar

Without I-Coils, core flux surfaces are more thoroughly destroyed by MHD

Without I-Coils, core flux surfaces are more thoroughly destroyed by MHD

As flux surfaces begin to re-heal, core of well confined REs remains in I-Coil case

Late in time, high energy REs become deconfined due to large drift displacement

• During the current quench, applied n=3 fields alone do not affect core confinement

 Preservation of some confined field lines during MHD crash prevents loss of some fast electrons in the core

 In the simulations, n=3 perturbations increased volume of core confinement during crash, thereby <u>enhancing RE confinement</u>

Extra Slides

Equations

Large drift displacement at high energy can improve confinement

Curvature drift can improve confinement on stochastic fields, but also reduce confinement on field lines that approach the boundary

17 of

Current quench simulations are run with odd, even, and no I-Coil fields

- both even and odd parity I-Coil currents
- Even parity has strong resonant components, odd parity is mostly non-resonant

Simulations are free-boundary, but domain does not extend to the DIII-D wall

Boundary extends beyond LCFS, but must be kept inside I-Coil location

Resistivity is **Spitzer** (cold CQ plasma requires no artificial enhancement):

 $\eta = 13.7 \mu_o Z_{eff} (10/T_e)^{3/2}$ Ohm-m

Heat transport is approximately Braginskii:

 χ_{\perp} = 0.2(40/T_i)^{1/2}(1/B²) m/s

 $\chi_{||} = 2 \times 10^{6} (T_{e}/40)^{5/2} \text{ m/s}$

Considerably more density would be required for collisional RE avalanche suppression

