Dependence of Bootstrap Current, Stability, and Transport on the Safety Factor Profile in DIII-D Steady-State Scenario Discharges

Chris Holcomb

With
J. Ferron, A. White, T. Luce, P. Politzer,
F. Turco, J. DeBoo, T. Petrie, C. Petty,
R. La Haye, A. Hyatt, T. Rhodes,
L. Zeng, E. Doyle

1Lawrence Livermore National Laboratory
2General Atomics
3Oak Ridge Institute for Science & Education
4University of California, Los Angeles

Presented at
APS DPP
Nov. 2, 2009

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under DE-AC52-07NA27344 and General Atomics under DE-FC02-04ER54698
This Work Tests the Dependence of the Bootstrap Current on Choice of Target Safety Factor (q) Profile

Important for Achieving Steady-State Development Goals

1. Fully noninductive operation with a high bootstrap current fraction $f_{BS} \equiv I_{BS}/I_P \propto \beta_P \propto q\beta_N$

2. Avoid local noninductive “overdrive” $J_{NI} > J_{TOTAL}$ (incompatible with steady-state)

3. Achieve sufficient fusion gain $G \sim \beta_N H_{89}/q_{95}^2$ (G=0.3 for ITER $Q=5$ operation)

- Conventional approach has been to try to maximize f_{BS} by targeting high q_{min} and β_N with q_{95} set by a trade-off with G
There is a Recursive Relationship Between Target q-Profile and J_{BS} at high f_{BS}

- Limits our ability to predict J_{BS}
- Experiment designed to vary q and measure resulting profiles

Bootstrap Current Density

q-profile

Shear

Energy and Particle Transport

Density & Temperature Profiles

$J_B \propto \nabla p/B_p$
Experiment Produced Nine Different q-Profiles With \(q_{\text{min}} \approx 1.1, 1.5, 2 \) and \(q_{95} \approx 4.5, 5.6, 6.8 \)

- \(q_{95} \) adjusted by \(I_p \) at fixed \(B_T \)
- First scan at fixed \(\beta_N = 2.8 \) and second scan pushed \(\beta_N \) to maximum limited by stability or confinement
- Measured \(q \), density and temperature profiles
- Calculated Bootstrap Current Density using '99 Sauter formula in ONETWO transport code

\[
\frac{\langle J_{BS} \cdot B \rangle}{B_{T0}} = - \frac{F}{B_{T0}} \left[\frac{T_e}{d\psi} \left(L_{31} \right) + \frac{n_e}{d\psi} \left((L_{31} + L_{32}) \right) + \frac{T_i}{d\psi} \left(L_{31} \right) + \frac{n_i}{d\psi} \left((L_{31} + \alpha L_{34}) \right) \right]
\]

- Compared all quantities averaged over few hundred to \(~1000\) ms for better statistics
q-Profile Variation at $\beta_N = 2.8$ Led to Systematic Differences in Measured Density and Temperature

<table>
<thead>
<tr>
<th>q_{95}</th>
<th>4.5</th>
<th>6.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{min}</td>
<td>2</td>
<td>136837</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variation with q_{95}:
- n_e, T_e, T_i higher at low q_{95} ($q_{\text{min}} \approx 2$ shown here)

Variation with q_{min}:
- n_e higher and more peaked
- T_e more peaked
- T_i lower ($q_{95} \approx 4.5$ shown here)
q-Profile Variation at $\beta_N = 2.8$ Led to Systematic Differences in Measured Density and Temperature

<table>
<thead>
<tr>
<th>q_{95}</th>
<th>4.5</th>
<th>6.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{min}</td>
<td>2</td>
<td>136837</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>136854</td>
</tr>
</tbody>
</table>

Variation with q_{min}:
- n_e higher and more peaked
- T_e more peaked
- T_i lower

(q$_{95} \approx$ 4.5 shown here)
q-Profile Variation at $\beta_N = 2.8$ Led to Systematic Differences in Measured Density and Temperature

<table>
<thead>
<tr>
<th>q_{95}</th>
<th>4.5</th>
<th>6.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{min}</td>
<td>2</td>
<td>136837</td>
</tr>
<tr>
<td>1.1</td>
<td>136854</td>
<td>136853</td>
</tr>
</tbody>
</table>

Variation with q_{95}:
- n_e, T_e, T_i higher at low q_{95}

Variation with q_{min}:
- n_e higher and more peaked
- T_e more peaked
- T_i lower

These dependencies hold true in general in $\beta_N = 2.8$ data set (4 of 9 points in q-scan shown)
At $\beta_N = 2.8$, the Bootstrap Fraction Increased With q_{95} in Agreement With $f_{BS} \propto q_{\beta_N}$ Scaling

- Bootstrap Fraction leveled off or dropped with q_{min} above ~ 1.5
- This is contrary to expected q_{β_N} scaling
Increased Stability at Lower q_{min} Resulted in Highest Achieved β_N and f_{BS} Occurring at $q_{\text{min}} \approx 1.1$

Achieved β_N (Closed Symbols) and $n=1$
Ideal-Wall Limit from DCON (Open Symbols)

Bootstrap Current Fraction at Maximum Achieved β_N

Lowest q_{min}, $q_{95} \approx 6.8$ discharge had ~10% higher H_{89} than all others
Increasing β_N Broadened J_{BS} By Increasing ∇T_e and ∇T_i at Larger Radius

- This example, 2 shots: $q_{95}=5.6$, $q_{\min}\approx1.5$
 $\beta_N \approx 2.8 \rightarrow 3.6$
- Similar broadening with β_N for all q-profiles
- Broadening favorable for avoiding local noninductive current overdrive near $\rho\approx0.2$
- For some q profiles, $dn_e/d\rho$ changed as well
Extrapolating to the $n=1$ Ideal Wall β_N Limit
Suggests f_{BS} Maximizes Near $q_{min} \approx 1.5$

- Measured f_{BS}/β_N decreased going from low to high β_N at “fixed” q-profile
- This reflects change in density and temperature profiles with β_N
- Used the difference between measured f_{BS}/β_N at low and high β_N to scale to f_{BS} at the calculated ideal wall limit
Lower f_{BS} at $q_{min} > 1.5$ Caused Mostly By Lower Density and Lower Temperature Gradients

- Profiles from 3 shots: $q_{95}=6.8$, $q_{min} \approx 2$ (dash)
 $q_{min} \approx 1.5$
 $q_{min} \approx 1.1$
- β_N pushed to maximum
- In each row, first two quantities are leading scale factors of bootstrap terms in 3rd column
\(q_{\text{min}} > 1.5 \) Had Higher Measured Density Fluctuations and Calculated Growth Rates Than \(q_{\text{min}} \approx 1.1 \)

- FIR scattering spectrograms of \(\tilde{n} \) (\(k_{\theta} < 1 \text{ cm}^{-1} \))
- Linear TGLF runs show \(q_{\text{min}} \approx 1.1 \) was basically stable, \(q_{\text{min}} \approx 2 \) unstable to ITG type turbulence at mid-radius

\[q_{\text{min}} \approx 1.1 \]
\[q_{95} = 6.8 \]
\[\beta_N = 2.8 \]
Summary and Conclusions

- In our scans of q_{min} and q_{95}, the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{BS} \propto q_{\beta_N}$
Summary and Conclusions

- In our scans of q_{min} and q_{95}, the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{BS} \propto q^\beta_N$

- With existing control tools, $q_{\text{min}} \approx 1.5$ appears optimal for maximizing bootstrap current if the calculated ideal wall limit can be reached (only narrowly more so than $q_{\text{min}} \approx 1.1$)
Summary and Conclusions

• In our scans of q_{min} and q_{95}, the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{\text{BS}} \propto q\beta_N$

• With existing control tools, $q_{\text{min}} \approx 1.5$ appears optimal for maximizing bootstrap current if the calculated ideal wall limit can be reached (only narrowly more so than $q_{\text{min}} \approx 1.1$)

• $q_{\text{min}} \approx 2$ discharges achieved lower β_N and calculated $n=1$ β_N limits, had increased transport, lower density, lower temperature gradients, and as a result did not produce as much bootstrap current
Summary and Conclusions

• In our scans of q_{min} and q_{95}, the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{\text{BS}} \propto q_{\beta_N}$

• With existing control tools, $q_{\text{min}} \approx 1.5$ appears optimal for maximizing bootstrap current if the calculated ideal wall limit can be reached (only narrowly more so than $q_{\text{min}} \approx 1.1$)

• $q_{\text{min}} \approx 2$ discharges achieved lower β_N and calculated $n=1 \beta_N$ limits, had increased transport, lower density, lower temperature gradients, and as a result did not produce as much bootstrap current

• Highest f_{BS} achieved at highest q_{95} (=6.8), but scan suggests lower q_{95} is required for more reactor relevant fusion gain $G \sim \beta_N H_{89}/q_{95}^2$
Summary and Conclusions

- In our scans of q_{min} and q_{95}, the bootstrap current fraction increased with q_{95} but did not continue to increase with q_{min} above about 1.5 as expected by $f_{BS} \propto q\beta_N$
- With existing control tools, $q_{\text{min}} \approx 1.5$ appears optimal for maximizing bootstrap current if the calculated ideal wall limit can be reached (only narrowly more so than $q_{\text{min}} \approx 1.1$)
- $q_{\text{min}} \approx 2$ discharges achieved lower β_N and calculated $n=1 \beta_N$ limits, had increased transport, lower density, lower temperature gradients, and as a result did not produce as much bootstrap current
- Highest f_{BS} achieved at highest q_{95} (=6.8), but scan suggests lower q_{95} is required for more reactor relevant fusion gain $G \sim \beta_N H_{89}/q_{95}^2$
- New tools (off-axis NBI, more ECCD) may allow access to higher β_N limits and higher bootstrap fractions