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This Work Tests the Dependence of the Bootstrap Current 
on Choice of Target Safety Factor (q) Profile 

Important for Achieving Steady-State Development Goals 

1.  Fully noninductive operation with a high bootstrap current 
fraction  fBS ≡ IBS/IP ∝ βP ∝ qβN 

2.  Avoid local noninductive “overdrive” JNI > JTOTAL 
(incompatible with steady-state) 

3.  Achieve sufficient fusion gain G~βNH89/q95
2  (G=0.3 for ITER 

Q=5 operation)   

•  Conventional approach has been to try to maximize fBS by 
targeting high qmin and βN with q95 set by a trade-off with G 
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There is a Recursive Relationship Between Target q-Profile 
and JBS at high fBS  

•  Limits our ability to 
predict JBS 

•  Experiment 
designed to vary q 
and measure 
resulting profiles 

shear ∝
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Experiment Produced Nine Different q-Profiles With 
qmin ≈ 1.1, 1.5, 2 and q95 ≈ 4.5, 5.6, 6.8 

•  q95 adjusted by IP at fixed BT 

•  First scan at fixed βN=2.8 and second scan pushed βN to 
maximum limited by stability or confinement 

•  Measured q, density and temperature profiles 

•  Calculated Bootstrap Current Density using ‘99 Sauter formula in 
ONETWO transport code  

•  Compared all quantities averaged over few hundred to ~1000 ms 
for better statistics  
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q-Profile Variation at βN = 2.8 Led to Systematic 
Differences in Measured Density and Temperature  

q95


4.5
 6.8


qmin
 2
 136837
 136835


1.1


Variation with q95:  

ne, Te, Ti higher at low q95 
(qmin≈2 shown here) 

Variation with qmin: 

ne higher and more 
peaked 

Te more peaked 

Ti lower 

(q95≈4.5 shown here) 
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q-Profile Variation at βN = 2.8 Led to Systematic 
Differences in Measured Density and Temperature  

q95
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 6.8


qmin
 2
 136837
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Variation with q95:  
ne, Te, Ti higher at low q95  
Variation with qmin: 
ne higher and more 
peaked 
Te more peaked 
Ti lower 

These dependencies 
hold true in general in 
βN=2.8 data set (4 of 9 
points in q-scan shown) 
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At βN = 2.8, the Bootstrap Fraction Increased With 
q95 in Agreement With fBS ∝ qβN Scaling 

•  Bootstrap Fraction 
leveled off or 
dropped with qmin 
above ~1.5 

•  This is contrary to 
expected qβN 
scaling 
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Increased Stability at Lower qmin Resulted in 
Highest Achieved βN and fBS Occurring at qmin ≈ 1.1 

Lowest qmin, q95≈6.8 discharge had 
~10% higher H89 than all others 
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Increasing βN Broadened JBS By Increasing ∇Te and 
∇Ti at Larger Radius 

JBS (A/cm2) dne/dρ (1019m-3/m)  

dTe/dρ (kV/m)  
dTi/dρ (kV/m)  

ρ
 ρ


•  This example, 2 shots: 
q95=5.6, qmin≈1.5 

 βN ≈ 2.83.6 

•  Similar broadening 
with βN for all q-
profiles 

•  Broadening 
favorable for 
avoiding local 
noninductive current 
overdrive near ρ~0.2 

•  For some q profiles, 
dne/dρ changed as 
well




C. Holcomb APS/DPP 2008 

Extrapolating to the n=1 Ideal Wall βN Limit 
Suggests fBS Maximizes Near qmin≈1.5 

•  Measured fBS/βN decreased 
going from low to high βN at 
“fixed” q-profile 

•  This reflects change in 
density and temperature 
profiles with βN 

•  Used the difference 
between measured fBS/βN at 
low and high βN to scale to 
fBS at the calculated ideal 
wall limit 
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Lower fBS at qmin > 1.5 Caused Mostly By Lower 
Density and Lower Temperature Gradients 

•  Profiles from 3 
shots: q95=6.8, 
qmin≈2 (dash)   
qmin≈1.5              
qmin≈1.1 

•  βN pushed to 
maximum 

•  In each row, first 
two quantities 
are leading scale 
factors of 
bootstrap terms 
in 3rd column 
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qmin>1.5 Had Higher Measured Density Fluctuations 
and Calculated Growth Rates Than qmin≈1.1 

qmin≈2 
q95=6.8 
βN=2.8 

qmin≈1.1 
q95=6.8 
βN=2.8 

•  FIR scattering spectrograms of ñ 
(kθ<1 cm-1) 

•  Linear TGLF runs show qmin≈1.1 
was basically stable, qmin≈2 
unstable to ITG type turbulence 
at mid-radius 
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Summary and Conclusions 

•  In our scans of qmin and q95, the bootstrap current fraction increased 
with q95 but did not continue to increase with qmin above about 1.5 as 
expected by fBS ∝ qβN 
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•  New tools (off-axis NBI, more ECCD) may allow access to higher βN 
limits and higher bootstrap fractions 


