Abstract Submitted for the 50th Annual Meeting Division of Plasma Physics November 17–21, 2008, Dallas, Texas

Category Number and Subject:

[] Theory [X] Experiment

Boundary Intrinsic Velocity in DIII-D H-modes,* J.S. deGrassie, R.J. Groebner, K.H. Burrell, R.E. Waltz, GA, W.M. Solomon, PPPL – The toroidal velocity, V_{ϕ} , in the pedestal region of DIII-D H-mode discharges with negligible neutral beam injected (NBI) torque is nonzero, in the direction of the plasma current, $co-I_p$. This velocity is found to scale approximately linearly with the local ion temperature, T_i . Such a scaling can result simply because of thermal ion loss from the pedestal region; counter- I_p thermal ions are predominantly lost leaving a net co-I_p local average velocity. However, we also measure $V_{\phi} \sim T_i$ well inside of the pedestal region, where classical thermal ion orbit loss would not be effective. This could be explained by a toroidal momentum pinch with pinch velocity proportional to the gradient of T_i . There are theories that predict such a pinch driven by turbulence. We have used the GYRO code to investigate the scaling of the turbulent pinch effect in conditions typical of the edge region of these intrinsic H-mode discharges.

*Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC02-76CH03073.