Ratio of Electron Temperature and Density Fluctuation Amplitudes During ECH in DIII-D Ohmic and L-mode Discharges

A.E. White, L. Schmitz, W.A. Peebles, T.A. Carter, T.L. Rhodes, G. Wang, E.J. Doyle, J.C. Hillesheim, L. Zeng¹ G.R. McKee and M.W. Shafer² J.C. DeBoo and G.M. Staebler³

¹ University of California, Los Angeles
 ² University of Wisconsin, Madison
 ³General Atomics

Presented at the 50th Annual Meeting of the Division of Plasma Physics Dallas, TX November 19, 2008

The ratio of two-field fluctuation amplitudes may be useful to test models of core turbulence and transport

Electron Cyclotron Heating (ECH) is used to modify profiles in L-mode and Ohmic plasmas, changing drives for turbulence and for Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities

•Long wavelength *electron temperature fluctuations* and *density fluctuations* are *measured simultaneously*

• Correlation Electron Cyclotron Emission (CECE) (\tilde{T}_e/T_e : $k_{\theta}\rho_s < 0.3$)

• Beam Emission Spectroscopy (BES) ($\tilde{n}/n: k_{\theta}\rho_s < 0.5$)

• Tunable Multi-channel Reflectometer (ñ/n: $k_{\theta}\rho_s < 0.5$)

•Experimental results:

• The ratio of fluctuation levels $(\tilde{T}_e/T_e)/(\tilde{n}/n)$ increases during ECH in beam heated L-mode and Ohmic plasmas

- Linear Gyrokinetic Theory: Trapped Gyro-Landau Fluid (TGLF) Code
 - The ratio of relative fluctuation levels, $(\tilde{T}_e/T_e)/(\tilde{n}/n)$, is expected to increase with increases in $\gamma_{TEM}/\gamma_{ITG}$ caused by profile changes during ECH

L-mode plasmas (~2.6 MW NB power): Dominant change is in T_e with ~2.5 MW ECH deposited at ρ ~ 0.17

SAN DIEGO

- Sawtooth-free L-mode Inner wall limited
- • $B_T = 2.0$ T, $I_p = 1$ MA •110 GHz ECH ($\rho \sim 0.17$)

•Small changes in density

- •Changes in scale lengths, $L_{Te} = T_e/(dT_e/d\rho)$, L_n are small
- Largest changes overall:
 Increase in T_e (x1.5-2)
 Decrease in collisionality

•BES and CECE measure simultaneously in range $0.4 < \rho < 0.8$

In beam heated L-mode plasmas, fluctuation levels ratio $(\tilde{T}_e/T_e)/(\tilde{n}/n)$ increases with ECH

A. E. White et al. 50th APS - DPP Dallas, TX, 2008

SAN DIEGO

Different responses of electron temperature and density fluctuations reflect different sensitivities to TEM/ITG drives

SAN DIEGO

- Electron temperature fluctuations arise from non-Boltzmann, trapped electrons [Dannert POP 2005, White POP 2008]
- ${}^{\bullet}\widetilde{\mathrm{T}}_{\mathrm{e}}/\mathrm{T}_{\mathrm{e}}$ sensitive to changes in TEM drive
- Fluctuation levels ratio scales with growth rates ratio, $\gamma_{TEM} / \gamma_{ITG}$ [Evensen Nucl. Fusion 1998]

• TGLF outputs fluctuation levels calculated for each wavenumber from the nonlinear intensity of the turbulence and the moment equations [Staebler POP 2007, Kinsey POP 2008]

•TGLF predicted trend is consistent with experimental observations in L-mode plasmas with ECH

Ohmic plasmas: Dominant change is in T_e with 0.5 < P_{ECH} < 2.0 MW ECH deposited at $\rho \sim 0.4$

•Ohmic plasma, Lower single null, $B_T = 1.9 T$, $I_p = 0.8 MA$,

SAN DIEGO

In Ohmic plasmas $(\tilde{T}_e/T_e)/(\tilde{n}/n)$ increases during ECH

•Temperature fluctuations increase factors of 2-3

•Reflectometer and BES data indicate small increases in density fluctuations < 30%

•Ratio increases at least a factor of 2 from Ohmic to ECH phase in 133625

•Profile analysis and TGLF analysis are in progress

Summary and conclusions

- Scaling of fluctuation levels ratio with the growth rates ratio expected from theory
- $(\tilde{T}_e/T_e)/(\tilde{n}/n)$ *increases* during ECH in L-mode and Ohmic plasmas
- •TGLF shows an increase in $\gamma_{TEM} / \gamma_{TTG}$ and an increase in $(\tilde{T}_e/T_e)/(\tilde{n}_e/n_e)$ in beam-heated L-mode plasmas
- Future work to test connection between growth rates ratio and fluctuation levels ratio:
 - TGLF sensitivity scans for L-mode plasmas (L_n, L_{Te}, T_e/T_i, etc.)
 - •TGLF analysis for Ohmic experiments
 - Nonlinear gyrokinetic turbulence simulations

