Advanced Techniques for Neoclassical Tearing Mode (NTM) Control in DIII-D

By Francesco Volpe (ORAU, presently at IPP Garching)

With

M.A. Austin, R.J. La Haye, J. Lohr, R. Prater, E.J. Strait and A.Welander

Presented at Fiftieth APS Meeting of the Division of Plasma Physics Dallas, Texas

November 17-21, 2008

NTMs are a principal limit to high performance in ITER Control needs to be effective

From the 2007 special issue of Nuclear Fusion, "Progress in the ITER Physics Basis":

"the NTM instability is predicted to lead to confinement deterioration... and possibly... disruption"

- Stabilization by Electron Cyclotron Current Drive (ECCD) is a well-developed technique on several tokamaks
 - New Technique: Oblique Requires precise alignment **Electron Cyclotron Emission**
 - Efficiency benefits from modulation
 - (ECE) Becomes impossible if mode locks in a position not accessible to ECCD

New Technique: Rotating magnetic perturbations to move the island

Outline

- Motivation and principle of oblique ECE as a test of alignment and aid to modulation
- Experimental setup
- Results: alignment verified, complete 3/2 suppression
- Motivation for magnetic rotation in case of locking
- Slow, forced rotation of 2/1 NTM in presence of cw ECCD
- Fast, forced rotation of 2/1 NTM
- Summary and conclusions

NTMs can be stabilized by Electron Cyclotron Current Drive at the location of the magnetic island

• Modified Rutherford equation governs island growth

50th APS-DPP Meeting, Dallas, TX

 ω t (rad)

17-21 Nov. 2008

F.Volpe

Alignment and Modulation of ECCD to NTMs and Interpretation of ECE and magnetics are complicated 3D problems

O-point for Rotating m/n=3/2 NTM

Internal ECE tracking of NTMs has advantages compared with external magnetic probe data

• Magnetic probes measure δB_{θ} at wall

Pro: best measurement of frequency

Cons:

- No data for radial alignment
- Toroidal phase of island requires reconstruction of equilibrium and field lines

Horizontal ECE measures δT_e at q=m/n

Pro: Major radius of island can be determined

Cons:

- Also sensitive to other δT_e
- Still requires toroidal phase mapping
- Also requires radial mapping

6

Oblique ECE has advantages of horizontal ECE + no need for mapping

Oblique ECE, <u>along same direction as ECCD</u>, avoids need for equilibrium reconstruction and analysis

7

F.Volpe

ECE signals on other sides of island are out-of-phase.

Two ECE channels close to island track toroidal rotation and validate radial alignment of ECCD

Oblique ECE as a waveform generator for modulated ECCD, radially aligned, in synch and in phase with island O-point

F.Volpe

Observed Phase Reversal, indication of good alignment

First complete suppression of 3/2 NTM by ECCD modulated by oblique ECE in phase with O-point

What If the island grows, slows down and locks, or directly forms as a locked mode, not accessible to ECCD?

- Locking of 2/1 Tearing Mode likely in ITER, if insufficiently controlled (due to reduced NBI torque, consequent low rotation, and proximity to wall)
- Islands can lock in a position not accessible by ECCD:

Current-carrying structures can be moved by externally applied magnetic perturbations

Bootstrap deficit in the island is like a wire carrying a counter-current. Forces can be applied to this wire by magnetic fields generated by external coils.

Applied rotating n=1 field

Magnetic perturbations can <u>unlock</u> and <u>reposition</u> or <u>spin</u> the mode and so assist its control by ECCD

Approach 1 ("preferential locking"): Island dragged to new position accessible by gyrotrons. ECCD: CW

Approach 2 ("sustained rotation" or "entrainment"): Island forced to rotate. ECCD: CW or modulated*

* Simplified ECCD modulation:

freq. & phase determined by coil currents, not by "slippery" plasma

Tearing mode, rotated by magnetic perturbations and illuminated by ECCD, changes amplitude

tearing mode slips w.r.t. applied magnetic field (phase differs) when reduced in amplitude by ECCD

Subtraction of Vacuum Field confirms that initially locked mode changes amplitude when toroidally steered to location where ECCD is aligned with island O-point

Mode starts slipping under the effect of ECCD Mode recovers when ECCD off

Magnetic perturbations also used to sustain more rapid mode rotation, in absence of ECCD

Balance between static error field and applied rotating field explains rich phenomenology when perturbation is too small

Model explains non-uniform rotation and sudden fast rotation opposite to perturbation. It doesn't explain yet multiple revolutions and occasional period doubling.

Summary, Conclusions and Future Work

3/2 NTM completely suppressed by ECCD modulated in phase with O-point, on the basis of oblique ECE

- Future Work: Stabilize 2/1 with this method
- Oblique ECE channels out-of-phase indicate, off-line, good radial alignment between ECCD and NTM
 - Future Work: Align in real-time

2/1 Locked Mode repositioned by magnetic perturbations and partly stabilized by ECCD

- Future work: complete stabilization (more power and sustained good alignment)
- Mode forced to rotate at tens of Hz by rotating magnetic perturbations
 - Future work: add ECCD, modulated at frequency and phase of applied rotation

Ongoing and future work: Investigate physics of magnetically driven rotation. Exploit new advanced techniques for control and physics.

Backup Material

Magnetic measurements detect locked mode or imminent locking and trigger response

Mirnov Coils (poloidal field sensors) measure mode amplitude at >100Hz

Mirnov Coils+Frequency Counter measure angular frequency of mode, detect slowing down

Saddle loops (radial field sensors) measure mode amplitude at <100Hz . Suitable for "born locked" modes

I-coil Travelling Wave less effective at high frequencies

- Current I_{I-coil} delivered by power supplies falls off with f
- Besides, for the same I_{1-coil}, the magnetic perturbation exerted on the plasma decreases due to:
 - Partial compensation from image currents in the wall
 - More Shielding associated with (faster) rotation
- Furthermore, the same B_{I-coil} couples less effectively with a faster, rotationally mitigated, weaker mode (= compass of reduced μ immersed in the same B \Rightarrow B imparts reduced μ xB torque)
- Phase delays in power supplies (SPAs)
- SPAs=<u>Switching</u> Power Amplifiers ⇒ discrete steps

Mode Rotation and Locking are described by Torque Balance

$$I\frac{d^{2}\phi}{dt^{2}} = T_{wall} + T_{EF} + T_{RMP} + T_{TM} + T_{visc} + T_{NBI}$$
E.m. Torques on Island
modelled by Interaction between Helical Currents:

$$I_{h} = \pm 2|B_{R}(b)|b\left(\frac{b}{r_{mn}}\right)^{m}\frac{1}{m\mu_{0}}$$

$$T_{wall} = -\frac{[2\pi R B_{R}(b)r_{mn}]^{2}}{\mu_{0}b}\left[\frac{r_{mn}}{b}\right]^{2m-1}\frac{\Omega\tau}{1+(\Omega\tau)^{2}}$$

$$T_{EF} = -\pi^{2}R^{2}m\frac{a}{r_{mn}}I_{EF}B_{R}(a)\sin[n\phi(t)]$$

$$T_{RMP} = -\pi^{2}R^{2}m\frac{b}{r_{mn}}I_{RMP}B_{R}(b)\sin[n\phi(t) - n\phi_{RMP}(t)]$$

$$T_{TM} = -\pi^{2}R^{2}m\sum_{m',n'}\frac{r_{m'n'}}{r_{mn}}\sin[n\phi(t)]I_{m'n'}B_{R}[r_{m'n'}]$$

Gravitational Analogue: Island interaction with Error Field + Magnetic Perturbations modelled by static + moving Potential Well

Optimal RMP Amplitude and Phase depend on EF. Max Non-uniform Rotation for $A_{RMP} \approx A_{EF}$ and $\phi_{RMP} \approx \phi_{EF}$.

- Applications:
 - Sustained Rotation
 - New EFC Method? Spiralling RMP
 - Possible Explanation for Rotational Mitigation at ~10Hz

