TEARING MODE STABILITY OF STEADY-STATE SCENARIO PLASMAS IN DIII-D

Background
Tearing mode stability is crucial for high-performance scenarios intended for steady-state operation. The appearance of tearing modes in DIII-D discharges leads to loss of energy confinement, and to a redistribution of the current profile that is not recoverable with the available non-inductive current drive sources. It has been routinely observed, namely in high-
β quasi non-inductive DIII-D discharges, that ECD can prevent the mode formation, without a direct island stabilization.

Goals and method
☐ Observation of current density profiles -> identify patterns in the current evolution towards stability/instability:
 • what type of evolution characteristics unstable discharges?
 • what regions of the current profile are important?
☐ Observation of the type of modes that end the high-beta phases:
 • what can act on the modes stability?
☐ Observation of the effects of the EC current:
 • location, profile shape, power,
 • apply resistive stability models in order to assess what the patterns are supposed to do:
 • Evaluate stability of the equilibrium
 • change the equilibrium following the observed patterns
 • add ECD to the equilibrium
☐ Attempt a control of the discharge using the acquired predictive capability: ECD can correct the evolution of the plasma towards stability

1. The current profile evolution: impact of the current gradient on the mode destabilization

The current profile evolution towards the triggering of the mode shows:
1. a pattern inside \(P \approx 0.2 \)
2. a pattern between \(P \approx 0.3 \) and \(P \approx 0.8 \)
We will focus on (2), since the changes inside \(P \approx 0.2 \) are less likely to impact on the tearing modes (\(P > 0.4 \), but the actual importance of (1) remains an open question.

When ECD is not present (e.g. 234260) or the q-trip is (e.g. 234227), a “hole” is left in the profile, and the negative gradient

2. The nature of the modes affecting the confinement

- Tearing, slow growth (\(\geq 100 \) ms)
- no burst of MHD activity beforehand
- a single toroidal number
- Faster growth (\(\geq 10 \) ms); partly ideal?
- Bursts of MHD activity before the mode (\(f \approx 20-50 \) kHz)
- often \(n=2 \) is superimposed (e.g. a 5/2)

3. The action of ECCD

- Stabilization has been observed for off-axis injections (\(P > 0.25 \))
- A narrow deposition does not provide stability
- It is not a direct island stabilization!

A high current gradient, of either sign, appears to be related to mode triggering

<table>
<thead>
<tr>
<th>Negative gradients:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The rise of internal beam power ((\Phi)↑)</td>
</tr>
<tr>
<td>• The current diffusion</td>
</tr>
<tr>
<td>• The sudden loss of ECD (q-trip) can peak (J_\rho) at the centre, and take away current at (P \approx 0.2-0.4:)</td>
</tr>
</tbody>
</table>

The EC current prevents \(J_\rho \) from dropping at \(P \approx 0.2-0.4 \) and avoids the negative current gradient

<table>
<thead>
<tr>
<th>Positive gradients:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The ECCD power does not seem to be important for stability</td>
</tr>
<tr>
<td>• A few counter-examples for both narrow and broad depositions exist</td>
</tr>
</tbody>
</table>

3. Summary and conclusions

The current density profile and evolution have been analyzed for high-\(\beta \) discharges with and without off-axis ECCD, and with different ECCD depositions, to assess their impact on the discharge stability.

- A pattern in the \(J_\rho \) evolution has been identified, in the external part of the profile: the unstable discharges are characterized by a high or negative \(\nabla J_\rho \) close to the mode location
- A few counter-examples exist: a transient high\(\nabla J_\rho \) may not lead to instability
- The modes are mainly \(n=1 \) tearing instabilities: \(\Delta \) is sensitive to \(\nabla J_\rho \), \(\nabla \Phi \), AND the equilibrium
- A broad ECCD deposition can prevent a negative \(\nabla J_\rho \), while a narrow one may cause a greater \(\nabla J_\rho \) close to a rational surface

The stability analysis of “phase 2” should focus on the region \(P \approx 0.35-0.65 \) of the current profile