P. A. Politzer¹

for

E.J. Doyle², R.V. Budny³, J.C. DeBoo¹, J.R. Ferron¹, G.L. Jackson¹, T.C. Luce¹, M. Murakami⁴, T.H.Osborne¹, J.-M. Park⁴, H. Reimerdes⁵, T.A. Casper⁶, C.D. Challis⁷, R.J. Groebner¹, C.T. Holcomb⁶, A.W. Hyatt¹, R.J. La Haye¹, J. Kinsey¹, G.R. McKee⁸, T.W. Petrie¹, C.C. Petty¹, T.L. Rhodes², M.W. Schafer⁸, P.B. Snyder¹, E.J. Strait¹, M.R. Wade¹, G. Wang², W.P.West¹, and L. Zeng²

¹ General Atomics, ² UCLA, ³ PPPL, ⁴ ORNL, ⁵ Columbia Univ., ⁶ LLNL, ⁷ Euratom/UKAEA, Culham, ⁸ U. Wisconsin, Madison

50th Annual Meeting of the APS/DPP Dallas, Texas November 17-21, 2008

ITER demonstration discharges support further development of operating scenarios

- Develop sample discharges for further experiments in support of ITER
- Provide a better basis for projection to ITER performance
- Identify issues requiring further study
- This talk will
 - describe the discharges we've developed,
 - discuss some of the ITER physics issues raised by these experiments, and
 - present projections to ITER performance

APS/DPP 2008 GO3.00008 Politzer 02

DIII-D demonstration discharges meet ITER normalized performance targets

Four ITER scenarios are addressed on DIII-D:

Baseline:

conventional ELMy H-mode, with Q=10 at I=15 MA.

Steady-state:

fully noninductive operation, with Q~5 at I~9 MA.

Hybrid:

high neutron fluence, long pulse at reduced current, with Q~5-10 at I~11 MA.

Advanced inductive:

high performance, Q=20+, Pfus~700 MW, I=15+ MA.

 $G = \beta_N H_{89}/q_{95}^2$ is a useful control room measure of expected fusion performance.

DIII-D has the unique capability to evaluate ITER scenarios while matching the design shape and aspect ratio

- Reduce all ITER plasma dimensions by a factor of 3.7
- The DIII-D plasmas match the ITER design values for
 - plasma shape
 - aspect ratio
 - value of I/aB (normalized current)
- Target values for β_{N} and H_{98y2} were matched or exceeded
 - evaluate performance in the current flat-top phase
 - co-NBI used throughout

ITER startup study: JP6.082 G. Jackson, PO3.014 T. Casper

APS/DPP 2008 GO3.00008 Politzer 04

ITER baseline scenario parameters matched on DIII-D

- → I/aB equivalent to 15 MA in ITER, q₉₅ = 3.1
- → 3 second H-mode is ~ 3τ_R, approximately the same as in ITER
- → Absolute density ~ same as in ITER, n/n_{GW} ~ 0.65 (vs. 0.85 in ITER)
- → Operation limited to β_N ≤ 2,
 occasional disruptions when 2/1 tearing modes appear

Concerns identified for the baseline scenario include ELMs and internal inductance

- Fractional energy loss at ELMs substantially exceeds ITER limits
 - type I ELMs have large radial extent
 - energy loss/ELM > $0.1 \times W_{tot}$
 - strong motivation for more work on ELM control/modification/mitigation

- Internal inductance, l_i(3), for all scenarios in DIII-D was outside original ITER range for adequate control of plasma shape and position
 - → has helped to successfully motivate change in ITER PF control range requirements

Fully noninductive operation demonstrated in ITER shape

- Fully noninductive operation achieved in 8.5 MA (ITER equivalent) discharge with β_N = 3.1 – high bootstrap fraction, ~70%
- Note trade-off between fusion performance (G) and noninductive fraction with varying q₉₅

Hybrid plasmas lead to long pulse & high fluence in ITER; advanced inductive discharges provide a path to $Q \ge 20$

- Al: I/aB \rightarrow 14.8 MA in ITER, q₉₅ = 3.3 hybrid: I/aB \rightarrow 11.6 MA, q95 = 4.1
- Both hybrid and advanced inductive scenario plasmas have sustained high performance ($\beta_N = 2.8$) with excellent confinement (H_{98y2} = 1.5)
- Some issues to be addressed:
 - requirements and methods for access to these regimes in ITER,
 - performance with conditions more relevant to ITER (rotation, collisionality, divertor parameters, ...)
 - ELM mitigation

A good fit to pedestal parameters in the ITER scenarios is obtained from a new predictive model

- Compare the ITER scenario pedestal heights with the EPED1 predictive model
 → very good fit.
- For ITER parameters, in the baseline scenario EPED1 gives $\beta_{N,ped} = 0.65$ at $\rho = 0.96$.

Performance projections indicate ITER will meet its physics and technology objectives, with a good margin

- Project using various confinement scalings:
 - ITER 89P (Bohm-like)
 - IPB 98y2 (intermediate)
 - DSO3 (gyroBohm-like)
- Use the same β_N, H, and profiles as in DIII-D; reset n/n_{GW} = 0.85; assume T_i = T_e
- Solve for required P_{aux} (or H if ignited), P_{fus} and Q

	Base- line	Hybrid	AI	Steady- state
P _{fus} (ITER)	400	400	700	350
β <mark>n</mark>	1.8	2.8	2.8	3.1
Q				
ITER	10	5	≥20	5
89P	10.3	5.8 *	13.5	2.7*
98y2	22.4 ⁺	23.3	∞	5.8 *
DS03	∞+	∞+	∞	19.8

- * $P_{aux}(required) > P_{aux}(ITER) = 73 MW$
- + $P_{conduction} < P_{L-H}$ (Y. Martin)
- all scaled cases yield
 P_{fusion} ≥ ITER scenario value

Summary: DIII-D has demonstrated the performance required to meet ITER goals for four key scenarios

- The DIII-D ITER Demonstration discharge study addresses many of the key ITER physics issues,
 - ELMs, L-H transition, pedestal scaling, beta limits, ...
- DIII-D results have influenced the ITER design,
 expanding the operating range of the plasma shape control system
- DIII-D evaluation of ITER scenarios should be extended and improved
 - vary NBI power and torque to operate with reduced plasma rotation
 - extend operation with $T_e = T_i$
 - determine sensitivity of performance to shape
 - assess impact of ELM suppression
 - include startup and rampdown constraints in demonstration discharges
- → For more detail on this topic, visit Edward Doyle's poster (JP6.061) this afternoon

