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ITER demonstration discharges support further 
development of operating scenarios

 •Develop sample discharges for further 
experiments in support of ITER

 •Provide a better basis for projection to ITER 
performance

 • Identify issues requiring further study

➤ This talk will 
– describe the discharges we’ve developed, 
– discuss some of the ITER physics issues 
   raised by these experiments, and
– present projections to ITER performance
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DIII-D demonstration discharges meet 
ITER normalized performance targets

Four ITER scenarios are addressed 
on DIII-D:

Baseline: 
    conventional ELMy H-mode, 
    with Q=10 at I=15 MA.

Steady-state: 
    fully noninductive operation,
    with Q~5 at I~9 MA.

Hybrid: 
    high neutron fluence, long pulse
    at reduced current, 
    with Q~5-10 at I~11 MA.

Advanced inductive: 
    high performance, 
    Q=20+, Pfus~700 MW, I=15+ MA. G = βNH89/q952 is a useful control

room measure of expected 
fusion performance.
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DIII-D has the unique capability to evaluate ITER scenarios
while matching the design shape and aspect ratio

• Reduce all ITER plasma dimensions 
by a factor of 3.7

• The DIII-D plasmas match the ITER 
design values for 
– plasma shape
– aspect ratio
– value of I/aB (normalized current)

• Target values for βN and H98y2 were 
matched or exceeded
– evaluate performance in the
   current flat-top phase
– co-NBI used throughout
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ITER baseline scenario parameters matched on DIII-D

➔ I/aB equivalent to 15 MA in ITER, 
q95 = 3.1

➔ 3 second H-mode is ~ 3τR, 
approximately the same as 
in ITER

➔ Absolute density ~ same as 
in ITER, 
n/nGW ~ 0.65 (vs. 0.85 in ITER)

➔ Operation limited to βN ≤ 2,
– occasional disruptions when 
   2/1 tearing modes appear
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Concerns identified for the baseline scenario include 
ELMs and internal inductance

• Fractional energy loss at ELMs 
substantially exceeds ITER limits
– type I ELMs have large radial extent
– energy loss/ELM > 0.1×Wtot
➔ strong motivation for more work on
    ELM control/modification/mitigation

• Internal inductance, li(3), for all 
scenarios in DIII-D was outside original 
ITER range for adequate control of 
plasma shape and position
➔ has helped to successfully motivate
    change in ITER PF control range
    requirements
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Fully noninductive operation demonstrated in ITER shape

• Fully noninductive operation 
achieved in 8.5 MA (ITER 
equivalent) discharge with βN = 3.1
– high bootstrap fraction, ~70%

• Note trade-off between fusion 
performance (G) and noninductive 
fraction with varying q95
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Hybrid plasmas lead to long pulse & high fluence in ITER;
advanced inductive discharges provide a path to Q ≥ 20

• AI: I/aB → 14.8 MA in ITER, q95 = 3.3
hybrid: I/aB → 11.6 MA, q95 = 4.1

• Both hybrid and advanced inductive 
scenario plasmas have sustained high 
performance (βN = 2.8) with excellent 
confinement (H98y2 = 1.5)

• Some issues to be addressed: 
– requirements and methods for access
   to these regimes in ITER,
– performance with conditions 
   more relevant to ITER
   (rotation, collisionality, divertor 
    parameters, …)
– ELM mitigation
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A good fit to pedestal parameters in the ITER scenarios 
is obtained from a new predictive model

• Compare the ITER scenario 
pedestal heights with the 
EPED1 predictive model
➞ very good fit.

• For ITER parameters, in the 
baseline scenario EPED1 
gives βN,ped = 0.65 at ρ = 0.96.
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Performance projections indicate ITER will meet  its physics
and technology objectives, with a good margin 

   Base- Hybrid AI  Steady-
   line      state

Pfus(ITER) 400  400  700  350

βN   1.8  2.8  2.8  3.1

Q
ITER   10  5  ≥20  5
89P   10.3  5.8*  13.5  2.7*

98y2  22.4+ 23.3  ∞  5.8*

DS03  ∞+  ∞+  ∞  19.8

  * Paux(required) > Paux(ITER) = 73 MW
  + Pconduction < PL-H (Y. Martin)

– all scaled cases yield 
   Pfusion ≥ ITER scenario value  

• Project using various 
confinement scalings:
– ITER 89P (Bohm-like)
– IPB 98y2 (intermediate)
– DS03 (gyroBohm-like)

• Use the same βN, H, and 
profiles as in DIII-D;
reset n/nGW = 0.85;
assume Ti = Te

• Solve for required Paux 
(or H if ignited), 
Pfus and Q
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Summary: DIII-D has demonstrated the performance 
required to meet ITER goals for four key scenarios

• The DIII-D ITER Demonstration discharge study addresses many of the 
key ITER physics issues, 
– ELMs, L-H transition, pedestal scaling, beta limits, …

• DIII-D results have influenced the ITER design,
– expanding the operating range of the plasma shape control system

• DIII-D evaluation of ITER scenarios should be extended and improved
– vary NBI power and torque to operate with reduced plasma rotation
– extend operation with Te = Ti
– determine sensitivity of performance to shape
– assess impact of ELM suppression
– include startup and rampdown constraints in 
   demonstration discharges

➜ For more detail on this topic, 
visit Edward Doyle’s poster (JP6.061) this afternoon
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