
The Impact of Divertor Magnetic Balance and Particle
Drifts on Radiating Divertor Behavior in DIII-D

by
T.W. Petrie
for
G.D. Porter2, N.H. Brooks1, M.E. Fenstermacher2, J.R. Ferron1, M. Groth2, 
A.W. Hyatt1, R.J. La Haye1, C.J. Lasnier2, A.W. Leonard1, T.C. Luce1,
P.A. Politzer1, M.E. Rensink2, M.J. Schaffer1, M.R. Wade1, and J.G. Watkins3

1General Atomics, San Diego, California
2Lawrence Livermore National Laboratory, Livermore, California 
3Sandia National Laboratory, Albuquerque, New Mexico

Presented at the
50th APS Annual Meeting of
the Division of Plasma Physics
Dallas, Texas

November 17–21, 2008

368-08/TWP/rs

TW Petrie/APS/Nov2008



Introduction
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• Radiating Divertor Approach for Reducing Divertor Heat Flux
 – Seed impurities are injected into the private flux region
 – Upstream gas puffing and particle pumping at the divertor targets
  → Enhanced deuterium flow into the divertor
  → More difficult for impurities to escape the divertor
 – Result: More uniform dispersal of incident power in divertor + mantle

• Best Result (so far) for Single-null Plasmas
 – Ion B×∇B drift is directed away from the X-point
 – 60-65% reduction in the peak heat flux at the OSP
 – ne/neG ≈ 0.65, PRAD/PIN ≈ 0.65, H89P ≈ 2, Zeff ≈ 2.1

• Earlier experiments1,2 on DIII-D have suggested that 
 successful radiating divertor operation might be sensitive to
 – Ion B×∇B drift direction
 – Divertor closure
 – Magnetic balance, e.g.,  Single-null vs Double-null

1 M. Wade, et al., Nucl. Fusion 38 (1998)1839

2 T. Petrie, et al., Nucl. Mater. 363-365 (2007)416
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•   Experimental arrangement
 – The upper divertor is more “closed” than
  the lower divertor
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DIII–D Geometry is Well-Suited for Puff-and-Pump
Experiments with High-δ Plasma Shapes Near Double-Null

 Experimental arrangement
 – The upper divertor is more “closed” than
  the lower divertor 

 – Three cryopumps are independently controlled

 – The seed impurity (argon) can be injected into 
  the private flux regions of either divertor

 – Argon pressure measurements are made
  in the upper outer plenum

 – |dRsep|< 1.5 cm for all shots in this study

Shelf
Extension
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Cryo-Pump

Upper Inner
Cryo-Pump
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Ar

~

~* “SN” → |dRsep|> 1 cm

* “DN” → dRsep = 0
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“Upper SN”

dRsep ~ +0.9 cm

dRsep = RLOW – RUP

dRsep
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•  To match exhaust characteristics,
 only the outer pump in the
 dominant divertor is activated



NATIONAL FUSION FACILITY
DIII–D

Pedestal Density is Correlated More to Ion B×∇B  Drift 
Direction Than to Differences in DIII-D Divertor Geometry

B×∇B

0.8

nPED (1020 m–3)0.7

B×∇B
toward
XPT

ΓD2 = 9.3 Pa m3/s

0.6

0.5

0.4

0.3

0.2

0.0 1.0 2.0 3.0
Time (s)

Toward
X-point

4.0 5.0

0.1

B×∇B
away from
XPT

368-08/TP/rsT Petrie/APS/Nov2008

•  To match exhaust characteristics,
 only the outer pump in the
 dominant divertor is activated
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•  To match exhaust characteristics,
 only the outer pump in the
 dominant divertor is activated

•  Significant difference in pedestal
 density between B×∇B cases

•  This result is consistent with
 previous work highlighting
 the possible role of particle
 drifts in plasma fueling*, although 
 other factors are also likely
 in play
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• Drifts push ions
to inner divertor
which can detach 
with only “modest” 
argon injection
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 a factor of ~3× between
 dRsep = 0 and dRsep = 0.5 cm

•   nAR and nPED roughly
 tracks HL89 for dRsep
 < 0.5 cm

Significant Reductions in Argon Density in the Main
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• Breakthrough in fluid modeling with drifts qualitatively explains this 
 result by the ExB drift pattern in the divertor

• Experiments show that effective control of impurity inventory requires 
 unbalanced double-null with ion ∇B drift out of dominant divertor

→ result independent of physical divertor geometry in DIII–D

368-08/TP/rsT Petrie/APS/Nov2008



The Rate at Which Argon Accumulates in the Core
Depends of B×∇B Direction and Magnetic Balance
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• Argon accumulated faster in the core 
 of SNs when the B×∇B direction was
 toward the divertor with the 
 argon source
 
• The same can be said for DNs 

• Argon accumulated faster in the
 core of DNs than in SNs with the same
 B×∇B direction

• Argon pumping fraction in upper divertor
 – SN, B×∇B↓: 85% 
 – DN, B×∇B↓: 75% 
 – SN, B×∇B↑: 35% 
 – DN, B×∇B↑: 20% 
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The DN H-Mode Plasma Had About Twice the Argon Accumulation in 
the Main Plasma as the SN, When nPED, τE, and PRAD Were Matched
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The DN H-Mode Plasma Had About Twice the Argon Accumulation in 
the Main Plasma as the SN, When nPED, τE, and PRAD Were Matched

             “Advantages” in SN:

•  Greater D-flow on the HFS for “SN”

•  Narrower SOL on HFS for “DN”

•  More quiescent on HFS for “DN”

           ⇒ advantage: “SN”
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•   Both DN uses show a pronounced
 rise at high ΓD2
 –  Virtual detachment of upper
  inner divertor leg
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Gas Puffing to Inhibit Impurity Build Up Works Best for
SNs with B×∇B Away from the X-Point
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•   SNs with B×∇B toward the divertor
 shows a less pronounced reversal
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 –  Er×B drift in the private flux
  region toward inner target
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•   Both DN uses show a pronounced
 rise at high ΓD2
 –  Virtual detachment of upper
  inner divertor leg

•   SNs with B×∇B toward the divertor
 shows a less pronounced reversal
 of nAR

 –  Er×B drift in the private flux
  region toward inner target

•   SNs with B×∇B away from
 divertor appears best suited in
 keeping argon out of core plasma
 –  Er×B drift in private flux region
  toward the outer target

Gas Puffing to Inhibit Impurity Build Up Works Best for
SNs with B×∇B Away from the X-Point
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