Long-Wavelength Turbulence Scaling Properties in DIII-D,*
G.R. McKee, D.J. Schlossberg, M.W. Shafer (UW-Madison), C.H. Holland (UCSD), P. Gohil (GA) – The scaling properties of long-wavelength density fluctuations are investigated in DIII-D L-mode and H-mode plasmas utilizing the expanded high-sensitivity 2D Beam Emission Spectroscopy (BES) system. BES employs a 64-channel system that utilizes a radially-scannable 8x8 array sampling multiple radial and poloidal correlation lengths, allowing for full sampling of the 2D wavenumber spectrum. Measurements of turbulence as a function of several important dimensionless parameters ($\kappa, T_\text{e}/T_\text{i}$, ion mass, ρ_*) are obtained, showing that fluctuation intensity increases strongly with decreasing plasma elongation (at constant q), consistent with increased thermal transport and reduced energy confinement. In contrast, increasing T_e/T_i increases momentum and thermal transport with little change in low-k density fluctuations. Measurements obtained during a ρ_* (ρ_*/a) scan in hydrogen will also be presented. Together, these measurements will be crucial for comparing with transport simulations, such as GYRO and TGLF.

*Work supported by the US DOE under DE-FG02-89ER53296, DE-FG02-97ER54917, and DE-FC02-04ER54698.