Overview

DIII-D Simulation

ITER Simulation

Summary

 Runaway electrons are a major concern for ITER disruptions (in
addition to divertor heat load and mechanical forces on the vessel)

* A small seed population of runaway electrons can grow
exponentially due to an avalanche amplification process

o A critical electric field (proportional to the plasma density) must
be exceeded In order for the runaway avalanche to occur.
Rosenbluth calculated this critical field to be:

E

crit

=0.12n,

where ng ,, IS the (free + bound) electron density in units of
102%/m? and the electric field is in V/m

A possible runaway electron mitigation strategy is to keep E_,>E
by significantly increasing the electron inventory through
gas/solid/liquid injection of D,, noble gas, a mixture or other
species

The Bad News for ITER

* The avalanche amplification factor is an exponential function of
the plasma current given as:

A =exp(t) = exp(2.51,)

where the growth rate is v, tis the current quench duration, and |,
Is the plasma current in MA
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* As an example, a DIII-D plasma with 2 MA of current gives us
A~40. For an ITER plasma with 15 MA, this would be A~10%/

 DIII-D massive gas injection (MGI) experiments do not show
significant penetration of injected impurities into the plasma core,
and consistently have E/E_;>1

The Good News for ITER

 The Rosenbluth ratio Is given as:

E/E

crit

n(n,T)j/0.12n, ,, oc T*n7

* In normal DIII-D operation, assume T=4keV, n=8x101%/m?3,
j=2x10%A/m?. Then we have E/E,;=0.09

* Imagine cooling DIII-D purely by dilution, neglecting all radiation
and atomic physics. Then T~n1. In this case, E/E; ~ n1/?

» At 100 times densification of DIII-D, E/E_; Is already marginal

* When the temperature drops more strongly due to radiative
cooling, then E/E_; rises more sharply with density. Since the
thermal quench precedes the current quench, E/E_;, always gets
worse before it gets better

* For ITER nominal parameters of T=8.9keV, n=102%/m?3,
j=1.4x10°A/m?, this gives us E/E_,;;=0.01

* Thus, ITER iIs well below marginal for a densification of 100 or
even 500

* ITER stands a much better chance than DIII-D of maintaining
E/E_;;<1 during a mitigated disruption

* A DIIII-D EFIT equilibrium from discharge 128226 is used

* A uniform D, dilution cooling by a factor of 100 is assumed for the
Initial condition
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A uniform carbon density of 1% of the pre-dilution core electron
density (8.6x101//m?3) is assumed. The in-situ carbon is the
dominant radiator following the 100x dilution

* At this initial T, (~40eV), the physical value of Spitzer resistivity
can be used for the simulation without numerical difficulty
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e Simulations have 1 ms thermal quench, ending with n=1 MHD
event, and 3-5 ms current quench depending on value of y, (In
multiple simulations this ranged from ~50-150)

» Cooling front initially propagates inward due to the carbon
radiation peak around 10eV
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« Convection drives particles from the center toward the edge,
where they recombine due to very low T,. Particle loss is
enhanced during the 1/1 event
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At the start of the simulation, 100x dilution cooling produces

E>E_.;; In roughly the outer half of the plasma, and marginal in the
core

* As the carbon radiation cooling wave propagates inward during
the thermal quench, the region of E<E_, shrinks, and E/E_
reaches 10 or higher in large regions of the plasma

 After the thermal quench, the Rosenbluth criterion for collisional
suppression of runaways is satisfied almost nowhere

* An ITER equilibrium generated by L. Lao is used

condition, where the post dilution density is assumed to be a
uniform value of 1.5x10%2/m?3

* D, dilution cooling by a factor of 150 is assumed for the Initial

density (1018/m3) is assumed. The beryllium radiation is

dominate the overall radiated power

« Again, simulation is run at actual Spitzer resistivity
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* A uniform beryllium density of 1% of the pre-dilution electron

comparable to the bremsstrahlung in some regions, but does not
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* No appreciable MHD in the first 20 ms. Thermal quench is
ms, while current quench looks to be ~100 ms

contribution relative to Be radiation

20
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e Cooling is much more uniform due to large bremsstrahlung
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not hastened in this case by a 1/1 MHD event

the thermal quench
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* E/E;; Is very low at the start of the simulation and remains
below unity for most of the thermal quench

* E/E_,;; reaches ~1 on the inboard side during the current
guench, primarily due to the particle loss

o |f particle loss Is less or non-existent experimentally, then
ITER can maintain E<E_; throughout the current quench
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e Particle loss Is observed just as in DIII-D, although core loss is

* More uniform cooling leads to less current peaking by the end of

- 104

 Runaway electrons in ITER may be much more problematic
than DIII-D due to the avalanche mechanism and its exponential
dependence on plasma current

 But, runaway electrons could be less problematic for ITER than
DIII-D due to the inherently lower E/E_;; operating space

 DIII-D and ITER simulations of disruption mitigation by massive
D, dilution cooling have been carried out with the NIMROD code

* These simulations are done irrespective of the actual
mechanism for producing the large core density increase— MGl
has not demonstrated significant core penetration of impurities;
concelivably a pellet train or liquid jet could achieve the desired
penetration

Conclusions

* Maintaining E/E_,;;<1 across the entire plasma
during a mitigated DIII-D disruption is nearly
Impossible due to the temperature and density In
normal operation

 Dilution cooling by 150x D, densification in ITER
could maintain E/E,<1 throughout the current
guench, avoiding runaway avalanche amplification

 The ability to massively increase the core electron
density in DIII-D is a sufficient demonstration for
ITER

e Particle loss in the NIMROD simulations due to
convective flows, and strongly associated with the
m=1/n=1 MHD event, threaten to reduce n_ below the
threshold value during the current quench
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Future Work

e Particle loss is the biggest issue: reasonableness of this result
must be investigated in some fashion— experimentally, or by
altering numerical model or parameters to understand when it
occurs or can be eliminated in the simulations

* Only examining E/E_; Is not the full runaway picture. Detaliled
numerical models to look at generation, acceleration and
confinement of runaways will be developed

« Some comparisons with 1D FCQ code of Parks and Wu have
been made, more detailed attempts to understand the similarities
and differences in the results can be made

« Simulations of all types of disruption mitigation based on more
realistic impurity deposition models
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