### **Overview of Recent DIII-D Results in Support of ITER**

by C.M. Greenfield for the DIII-D Team

Presented at the 50th APS Annual Meeting of the Division of Plasma Physics Dallas, Texas

November 17-21, 2008





## DIII-D research has made significant contributions in the design and physics basis for ITER





## DIII-D research has made significant contributions in the design and physics basis for ITER





# DIII-D ELM suppression experiments show important role of resonant magnetic spectrum



 Width of island overlap region determines stochastic character of edge





C.M. Greenfield/APS-DPP/Nov2008

R.A. Moyer, this session; M.E. Fenstermacher, Tuesday morning

### Progress Made on Critical Design Issues for Use of RMP Coils for ELM Control in ITER

- ELM size and suppression threshold correlated with vacuum stochastic layer width
  - Design criterion for the ITER RMP coil
- Width of the q<sub>95</sub> ELM suppression resonant window increases with increasing δb<sub>⊥</sub> and width of vacuum stochastic layer
  - n=4 ITER coil design expected to provide larger q<sub>95</sub> operating window





C.M. Greenfield/APS-DPP/Nov2008

R.A. Moyer, this session; M.E. Fenstermacher, Tuesday morning

### **DIII-D experiments have achieved fusion performance** at the level required for ITER goals

Flattop performance in ITER Operating Scenarios with ITER shape, aspect ratio, I/aB

0.8 131499 ITER Design Range **Baseline** (3) **Q=10 in ITER** - Reference operating case 0.4 q<sub>95</sub> = 3.1 G – Q=10 at 15 MA, β<sub>N</sub>≈1.8, q<sub>95</sub>≈3 **0.0**E 5.0 0.0 1.0 2.0 3.0 4.0 Time (s) 1.0 0.5 DIII-D 0.0 – ITER Scaled -0.5 -1.0 



1.5

2.0



C.M. Greenfield/APS-DPP/Nov2008

T.A. Casper, this session; P.A. Politzer, Tuesday morning

# DIII-D experiments have achieved fusion performance at the level required for ITER goals

Flattop performance in ITER Operating Scenarios with ITER shape, aspect ratio, I/aB

- Baseline
  - Reference operating case
  - Q=10 at 15 MA, β<sub>N</sub>≈1.8, q<sub>95</sub>≈3
- Advanced inductive
  - High fusion gain
  - Q=30 at 15 MA, β<sub>N</sub>≈2.8, q<sub>95</sub>≈3







C.M. Greenfield/APS-DPP/Nov2008

T.A. Casper, this session; P.A. Politzer, Tuesday morning

# DIII-D experiments have achieved fusion performance at the level required for ITER goals

Flattop performance in ITER Operating Scenarios with ITER shape, aspect ratio, I/aB

#### Baseline

- Reference operating case
- Q=10 at 15 MA, β<sub>N</sub>≈1.8, q<sub>95</sub>≈3
- Advanced inductive
  - High fusion gain
  - Q=30 at 15 MA, β<sub>N</sub>≈2.8, q<sub>95</sub>≈3

### • Hybrid

- Long pulse, high fluence
- Q=5 at 12 MA, β<sub>N</sub>≈2.5, q<sub>95</sub>≈4







T.A. Casper, this session; P.A. Politzer, Tuesday morning

# DIII-D experiments have achieved fusion performance at the level required for ITER goals

Flattop performance in ITER Operating Scenarios with ITER shape, aspect ratio, I/aB

#### Baseline

- Reference operating case
- Q=10 at 15 MA, β<sub>N</sub>≈1.8, q<sub>95</sub>≈3
- Advanced inductive
  - High fusion gain
  - Q=30 at 15 MA, β<sub>N</sub>≈2.8, q<sub>95</sub>≈3

### Hybrid

- Long pulse, high fluence
- Q=5 at 12 MA, β<sub>N</sub>≈2.5, q<sub>95</sub>≈4

### Steady-state

- Fully non-inductive





C.M. Greenfield/APS-DPP/Nov2008

P.A. Politzer, Tuesday morning

# Hybrid scenario with excellent performance accessed with large bore ITER startup

### Large Bore startup includes

- Initiation on outer limiter
- Large cross-section early in limiter phase
- Early x-point formation
- No auxiliary heating until close to full current
- Excellent plasma performance
  - $\beta_{N} = 2.9$
  - $H_{98y2} = 1.6$
  - G = 0.42  $\rightarrow$  sufficient for Q = 10 in ITER at 11.6 MA



T.A. Casper, this session; P.A. Politzer, Tuesday

morning

 At higher q<sub>95</sub>, hybrid scenario achieved with ~50% bootstrap current and ~100% non-inductive current



### Duration of $f_{ni}$ ~1 at high $\beta_n$ and $f_{bs}$ extended with optimized shape and increased ECCD power



- High triangularity, moderate squareness, slightly upward biased double-null
  - $β_N ≈ 3.5-3.9$  (≤30% above nowall limit)

$$-$$
 V<sub>surf</sub>  $\approx$  0 for  $\sim 0.7\tau_R$ 

- $-q_{\rm min} \approx 1.5, H_{98} \approx 1.5$  at start of high- $\beta_N$  phase
- Transport code simulations calculate  $f_{\rm NI} \approx 1$  and  $f_{\rm BS} \approx 0.65$

**Best previous:** 

 $\beta_{\rm N} \approx 3.2-3.6$ , with  $V_{\rm surf} \approx 0$  for

J.R. Ferron, this session; C.T. Holcomb, Monday 368-08/CMG/cmg 11, afternoon (invited)



C.M. Greenfield/APS-DPP/Nov2008

### Quiescent H-mode (ELM-free) achieved with co-NBI

#### • ELM-free operation for ~1s

 Radiated power, core density, and pedestal density are constant



- QH-mode plasmas have strong rotational shear at the edge
  - Consistent with predicted stability of peeling-ballooning mode



K.H. Burrell, Wednesday

morning (invited)



C.M. Greenfield/APS-DPP/Nov2008

# H-mode pedestal characteristics predicted by EPED1 pedestal model in agreement with experiment

- Input: B<sub>T</sub>, I<sub>P</sub>, R, a,  $\kappa$ ,  $\delta$ , n<sub>eped</sub>,  $\beta$ <sub>global</sub>
- Output: Pedestal height and width
  - Peeling-ballooning stability from ELITE
  - Width:  $\Delta_{\psi_N} = 0.076 \beta_{p,ped}^{1/2}$
- Validated with DIII-D data with large parameter variations
  - Comparisons with JET and JT-60U yield reasonable agreement
- Preliminary prediction for ITER pedestal parameters supports favorable performance predictions



P.B. Snyder, Wednesday

morning (invited)

NATIONAL FUSION FACILITY

C.M. Greenfield/APS-DPP/Nov2008

## Increased local shear suppression suppresses and decorrelates turbulence during rational $q_{min}$ events

- Local poloidal velocity shear rate calculated via  $\Delta v_{\theta} / \Delta r$ 
  - Shear rate increases following q<sub>min</sub>=3
- Correlation time shortens during increased velocity shear
  - Increased decorrelation rate
- Reduction in radial correlation length and density fluctuation simultaneously observed
- Firs shear suppression model [P.W. Terry, Rev. Mod. Phys. <u>72</u>, 109 (2000)]
  - Eddy lifetime and size decreases as shear rate rises



M.W. Shafer, this session



C.M. Greenfield/APS-DPP/Nov2008

## Multiple sources of torque will affect ITER's rotation

- Static non-resonant n=3 fields apply a torque to the plasma
  - Rotation accelerates for cases with small, negative, rotation
- Torque is consistent with prediction of Neoclassical Toroidal Viscosity theory
  - Drags rotation toward a non-zero offset rotation ~ - $\omega_i^*$
- Torque from non-resonant part of ELM control field predicted to be >>T<sub>NBI</sub> in ITER
- Other experiments show "intrinsic" torque consistent with thermal ion orbit loss





A.M. Garofalo, Monday morning (invited); 368-08/CMG/cmg 15 J.S. deGrassie, this session

# Validated off-axis neutral beam current drive model contributes to physics basis for planned modification



#### Prototype off-axis NBCD experiment in DIII-D

- Vertically shifted small plasmas and existing (midplane) NBI
- Validates prediction that misalignment with local pitch of magnetic field lines can reduce NBCD by 60-65%

### Implications:

- Guides design of off-axis NBI for DIII-D
- In ITER, ~20% increase if  $B_T$  is reversed
- Modification of the DIII-D NBI system will
  - Support steady state scenario development for ITER and beyond
  - Provide a flexible scientific tool

J.M. Park, Thursday afternoon (invited)



# Validated neutral beam current drive model contributes to physics basis for planned modification



Planned modification to a DIII-D beamline will allow on- or offaxis aiming of NBCD

#### Prototype off-axis NBCD experiment in DIII-D

- Vertically shifted small plasmas and existing (midplane) NBI
- Validates prediction that misalignment with local pitch of magnetic field lines can reduce NBCD by 60-65%

### • Implications:

- Guides design of off-axis NBI for DIII-D
- In ITER, ~20% increase if  $B_T$  is reversed
- Modification of the DIII-D NBI system will
  - Support steady state scenario development for ITER and beyond
  - Provide a flexible scientific tool

J.M. Park, Thursday afternoon (invited)



### In this session, we present results of DIII-D research supporting ITER, developing a physics basis for steady-state high performance, and advancing fusion science

- Enable the success of ITER by providing physics solutions to key physics issues
  - R.A. Moyer: Particle Transport in RMP H-modes
  - A.G. McLean: Hydrogenic retention
  - W. Wu: 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks
  - T.A. Casper: Experimental and Model Validation of ITER Operational Scenarios
  - More in session GO3: Research in Support of ITER
- Develop the physics basis for steady-state operation in ITER and beyond
  - J.R. Ferron: High beta steady-state operating scenarios
  - T.W. Petrie: Core-edge coupling
  - H. Reimerdes: Wall-stabilization
  - Y. In: Feedback stabilization of current-driven resistive-wall-modes
- Advance the fundamental understanding of fusion plasmas along a broad front
  - R.J. Buttery: Response of tearing stability to variations in rotation
  - J.S. deGrassie: Intrinsic rotation
  - A.E. White: Simultaneous measurements of  $T_e$  and  $n_e$  fluctuations
  - M.W. Shafer: Turbulence suppression and shear flow dynamics
  - J.C. DeBoo: Modulation of TEM Turbulence in DIII-D L-mode Discharges
  - R. Nazikian: Alfvén eigenmode research



### Other DIII–D and related talks and posters at this meeting

| Session GO3: Research in Support of ITER (Tuesday morning)                 |                   |                                                                                                                                |
|----------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                          | M.E.Fenstermacher | Comparison of ELM Control Using One vs. Two Rows of RMP Coils in DIII-D                                                        |
| 4                                                                          | P.Gohil           | H-mode Power Threshold, Pedestal and ELM Characteristics and Transport<br>in Hydrogen Plasmas in DIII-D                        |
| 6                                                                          | D.A.Humphreys     | ITER Vertical Stability Guidance from Multi-machine Experiments                                                                |
| 8                                                                          | P.A.Politzer      | Demonstration of ITER Operational Scenarios on DIII-D                                                                          |
| 12                                                                         | E.M.Hollmann      | Impurity Assimilation During Massive Gas Injection for Disruption Mitigation in DIII-D                                         |
| Invited talks                                                              |                   |                                                                                                                                |
| Mon 10:15AM                                                                | A.M.Garofalo      | Plasma rotation driven by static nonresonant magnetic fields                                                                   |
| Mon 3:00PM                                                                 | C.T.Holcomb       | Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D |
| Tue 10:15AM                                                                | N.N.Gorelenkov    | Beta-induced Alfvén-Acoustic Eigenmodes in NSTX and DIII-D<br>Driven by Beam Ions                                              |
| Wed 9:45AM                                                                 | P.B.Snyder        | Development and Validation of a Predictive Model for the Pedestal Height                                                       |
| Wed 10:45AM                                                                | K.H.Burrell       | Edge Pedestal Control in Quiescent H-Mode Discharges in DIII-D Using<br>Co plus Counter Neutral Beam Injection                 |
| Thu 11:00AM                                                                | J.H.Yu            | Fast imaging of transients and coherent MHD modes in DIII-D                                                                    |
| Thu 12:00PM                                                                | E.Belli           | Drift-Kinetic Simulations of Neoclassical Transport                                                                            |
| Thu 3:00PM                                                                 | J.M.Park          | Validation of On- and Off-axis Neutral Beam Current Drive Against<br>Experiment in DIII-D                                      |
| Thu 4:30PM                                                                 | F. Volpe          | Advanced Techniques for Neoclassical Tearing Mode Control by Electron<br>Cyclotron Current Drive in DIII-D                     |
| Fri 11:15AM                                                                | L.Schmitz         | Reduction of TEM-scale density fluctuations in the core and edge of H-mode DIII-D plasmas                                      |
| DIII-D Poster Sessions: JP6 (Tuesday afternoon) and TP6 (Thursday, 9:30AM) |                   |                                                                                                                                |



