H-mode Power Threshold, Pedestal and ELM Characteristics and Transport in Hydrogen Plasmas in DIII–D

by P. Gohil

in collaboration with R.J. Groebner, G.R. McKee,¹ J.S. deGrassie, T.C. Jernigan,² A.W. Leonard, T.H. Osborne, D.J. Schlossberg,¹ J.T. Scoville, P.B. Snyder, and E.J. Strait,

¹University of Wisconsin-Madison, Madison, Wisconsin ²Oak Ridge National Laboratory, Oak Ridge, Tennessee

Presented at the 50th APS Annual Meeting of the Division of Plasma Physics Dallas, Texas

November 17-21, 2008

Motivation

Operations

- First (non-activated) operational phase in ITER is planned to be with hydrogen and/or helium plasmas
 - Important phase for developing control hardware and techniques (e.g. for ELMs NTMs, etc)
 - Determine the interaction with plasma facing components (e.g. divertor heat loads and erosion, etc)
 - Dependent on obtaining H-mode plasmas

Physics

- Dependence of the pedestal width on $\beta_{\theta}^{\text{ped}}$ or $\rho_{i\theta}$
 - Mass dependence can resolve this issue

The Injected Torque was Controlled by Careful Selection of the DIII–D Neutral Beams

- Experiments performed with
 - NBI (H°) \rightarrow H+ plasmas
 - NBI (D°) \rightarrow D+ plasmas
- Capability for performing simultaneous co-current and counter-current NBI
 - Provides independent control of torque and power

For D Plasmas with D-NBI, the H-Mode Power Threshold Varies Strongly with the Applied Beam Torque

Hydrogen Plasmas: The H-mode Power Threshold with Counter-NBI is at Least a Factor of 2 Lower Than with All co-NBI

- NBI(H^o) → H⁺ plasmas
- With co-NBI: stays in L-mode at medium target density (3×10¹⁹ m⁻³)
- Hydrogen purity (H/H&D) was above 90% in L-mode

P Gohil/APS/Nov2008

The H-mode Threshold Power Increases With Injected Torque in Hydrogen Plasmas (Similar to Deuterium Plasmas)

Hydrogen threshold power is twice that for deuterium at zero torque

P Gohil/APS/Nov2008

The H-mode Power Threshold is Dependent on the Location of the Plasma X-point From the Divertor Surface

- Threshold power lowered by 20%–40% by reducing height of X-point above lower divertor from 26 to 10 cm
- Trend of increasing threshold power with increasing torque still present

Application of ECH Lowers the Required Threshold Power Slightly (~15%) Compared to the NBI Discharges

P Gohil/APS/Nov2008

Pedestal Width Studies With H and D Plasmas Allows Determination of Width Dependence on $\beta_{\theta}^{\text{ped}}$ or $\rho_{i\theta}$

- Comparing the pedestal widths in D and H plasmas provides an opportunity to break the degeneracy
- $\rho_{i\theta}$ scales with ion mass as $\sqrt{M_i}$ 1.5 - $\beta_A^{\tilde{p}ed}$ has no explicit mass 1.(dépendence 10²⁰ m⁻³ **3.0** 1.(keV 0.6 $\sqrt{\beta_{\theta}^{\text{ped}}}$ scaling: $\Delta_p^{\text{H}}/\Delta_p^{\text{D}} = 1$ 0.5 0.4 0.2 Ne $\rho_{i\theta}$ scaling: $\Delta_p^H / \Delta_p^D = 0.7$ • 0.0 0.8 0.9 0.8 0.9 1.0 0.7 1.0 30 1.5 • Actual $\Delta_p^H / \Delta_p^D = 1.15$ 25 - Consistent with $\sqrt{\beta_{\theta}^{ped}}$ scaling 20 1.0 kPa 15 133826 keV 131498 0.5 10 **P**tot 0.9 1.0 0.8 Q Ψ_{N}

Conclusions

- The net power required to access the H-mode increases with applied torque
 - For both hydrogen and deuterium
 - Hydrogen threshold power is twice that for deuterium at zero torque
 - Trend with torque is favorable for ITER where low input torque is expected
 - The threshold power is sensitive to the plasma geometry; specifically, to the X-point height above divertor surface
- Present power threshold scaling studies do not include torque, plasma rotation or plasma geometry effects
 - may explain the large range/error in prediction for present and future fusion devices
- The pedestal width is consistent with a $\sqrt{\beta_{\theta}^{\text{ped}}}$ scaling

