Studies in DIII-D of High Beta Discharge Scenarios Appropriate for Steady-State Tokamak Operation With Burning Plasmas

by J.R. Ferron

With C.T. Holcomb², T.C. Luce¹, T.A. Casper², J.C. DeBoo¹, E.J. Doyle³, M. Murakami⁵, Y. Ou⁴, J.M. Park⁵, T.W. Petrie¹, C.C. Petty¹, P. Politzer¹, H. Reimerdes⁷, M. Schneider⁶, E.Schuster⁴

¹General Atomics
²Lawrenece Livermore National Laboratory
³University of California, Los Angeles
⁴Lehigh University
⁵Oak Ridge National Laboratory
⁶CEA
⁷Columbia University

Presented at the 50th APS Annual Meeting of the Division of Plasma Physics Dallas, Texas

November 17-21, 2008

Multiple steady-state scenarios are under study at DIII-D with different current profiles and β_N operating ranges

Common goals:

- f_{NI} = 1 (steady-state)
- high β_T (fusion power density)

In this talk:

- Optimization of elevated q_{min} discharges (Holcomb,Cl1.3)
 - Motivation for increased $q_{min} \approx$ 1.5-2 : $J_{BS} \propto$ 1/B_{\theta}
- Discharges with increased $I_i \approx 1.1-1.4$
 - Motivation: the increased β limit without wall stabilization and better confinement at higher I_i
- Comparison of ideal stability and current density profiles

Other DIII-D steady-state scenarios not discussed here:

- Very broad current profile, q_{min} >2 (Garofalo PoP 2006)
- Hybrid with on-axis current drive (Petty, IAEA 2008)

Confinement and Achievable β_N are Optimized at Intermediate Values of the Shape Squareness

- Observed change in maximum achieved β_N is in agreement with ideal MHD modeling of low-n kink (Holcomb, CI1.3)
- In the reduced confinement at higher squareness:
 - ELMs are smaller, less regular
 - Core rotation is lower
 - Density fluctuation level is higher

Unbalanced Double-null Minimizes n_e for Efficient Current Drive with Little Impact on Confinement

ECCD with a relatively broad deposition profile enhances stability to the 2/1 tearing mode at high beta

- n = 1 mode avoided in discharge with ECCD (blue)
- n = 1 appears after ECCD is turned off (red)
- Alignment of broadly deposited ECCD with q = 2 surface not necessary for improved 2/1 stability
- See Turco TP6.3

Duration of f_{NI} near 1 extended through operation at increased β_N without termination by a 2/1 NTM

- β_N = 3.5-3.7
- Surface voltage \approx 0, indicating $f_{NI} \sim 1$, for $\sim 0.7\tau_R$
- Calculated f_{NI}≈1 and f_{BS}≈0.65
- Present limitations:
 - Available neutral beam energy limits duration
 - Neutral beam and ECCD power limit I_{NI}

High initial I_i obtained using long ohmic phase to allow current to penetrate to the axis

 After H-mode transition, I_i decreases

- Broad J_{BS} profile
- J_{BS} peak in the H-mode pedestal
- All co-injection P_{beam} used to maximize β_N

r q_{min} ≈ 1

β_N remains above 4 for 1 s as the current profile evolves

- Initially β_N ≈ 4.5 is below 4l_i, the control room estimate for the ideal n = 1 no-wall stability limit
- Confinement well above standard H-mode value
 - Decreases as l_i drops
- Current profile not yet stationary
 - Future step in scenario development

MHD spectroscopy indicates a reduction in n = 1 kink mode stability at $\beta_N/l_i\approx 4$

- Indicator is change in slope of response (red points)
- Consistent with the ideal MHD no-wall kink stability limit near 4l_i

With f_{NI} at or Above 1, the $I_i > 1$ Scenario is a Candidate for Steady-state Operation

AL FUSION FACINTY

- Measured surface voltage < 0
- Agrees with transport code modeling
- Calculated $f_{NI} \approx 1.2$
- Calculated $f_{BS} \approx 0.9$

Stabilization by coupling to an ideal wall is required to obtain high β_N with elevated q_{min} but not at high I_i

- β_N is at the ideal-wall limit
- Rotation or feedback is required to stabilize resistive wall modes

- β_N is near or below no-wall limit (≈ 3.8l_i)
- β_N = 5 should be possible at l_i >1.4 without rotation or hardware to stabilize resistive wall modes

Profiles of $J_{\rm IND}$ differentiate the near stationary elevated q_{min} scenario and the still transient high I_i discharge

- Good alignment between J_{NI} and J_{TOTAL}
 - Small residual J_{IND}

- To convert to steady-state:
 - Replace peaked J_{IND}
 with efficient on-axis CD
 - Reduce H-mode pedestal J_{BS}

Progress has been made on two different approaches to a steady-state scenario with high fusion gain

- Elevated q_{min} scenario has been optimized toward long duration operation with high $\beta_{\rm N}$ and $f_{\rm NI}$ = 1
 - Details of the discharge shape can have a significant effect on performance
 - Duration with surface voltage \approx 0 extended at higher β_N without termination by a 2/1 tearing mode
- In the high I_i scenario, $\beta_N > 4.5$ obtained simultaneously with $f_{NI} > 1$ and $f_{BS} > 0.8$
 - Peak β_{N} is less than the ideal no-wall n = 1 stability limit
 - Indicates the possibility of steady-state operation with $q_{min} \approx 1$ without wall stabilization

