Studies in DIII-D of High Beta Discharge Scenarios Appropriate for Steady-State Tokamak Operation With Burning Plasmas

by
J.R. Ferron

With
C.T. Holcomb², T.C. Luce¹, T.A. Casper², J.C. DeBoo¹, E.J. Doyle³, M. Murakami⁵, Y. Ou⁴, J.M. Park⁶, T.W. Petrie¹, C.C. Petty¹, P. Politzer¹, H. Reimerdes⁷, M. Schneider⁶, E. Schuster⁴

¹General Atomics
²Lawrence Livermore National Laboratory
³University of California, Los Angeles
⁴Lehigh University
⁵Oak Ridge National Laboratory
⁶CEA
⁷Columbia University

Presented at the
50th APS Annual Meeting of
the Division of Plasma Physics
Dallas, Texas

November 17–21, 2008
Multiple steady-state scenarios are under study at DIII-D with different current profiles and β_N operating ranges

Common goals:
• $f_{NI} = 1$ (steady-state)
• high β_T (fusion power density)

In this talk:
• Optimization of elevated q_{min} discharges \textbf{(Holcomb,ClI1.3)}
 – Motivation for increased $q_{min} \approx 1.5$-2: $J_{BS} \propto 1/B_\theta$
• Discharges with increased $l_i \approx 1.1$-1.4
 – Motivation: the increased β limit without wall stabilization and better confinement at higher l_i
• Comparison of ideal stability and current density profiles

Other DIII-D steady-state scenarios not discussed here:
• Very broad current profile, $q_{min} > 2$ \textbf{(Garofalo PoP 2006)}
• Hybrid with on-axis current drive \textbf{(Petty, IAEA 2008)}
Confinement and Achievable β_N are Optimized at Intermediate Values of the Shape Squareness

• Observed change in maximum achieved β_N is in agreement with ideal MHD modeling of low-n kink (Holcomb, CI1.3)

• In the reduced confinement at higher squareness:
 - ELMs are smaller, less regular
 - Core rotation is lower
 - Density fluctuation level is higher
Unbalanced Double-null Minimizes n_e for Efficient Current Drive with Little Impact on Confinement

- Small bias away from ion $B_x \nabla B$ direction results in lower density than a balanced shape or a bias toward $B_x \nabla B$

- These dRsep changes do not affect confinement

Petrie PO3.8
ECCD with a relatively broad deposition profile enhances stability to the 2/1 tearing mode at high beta

- n = 1 mode avoided in discharge with ECCD (blue)
- n = 1 appears after ECCD is turned off (red)
- Alignment of broadly deposited ECCD with q = 2 surface not necessary for improved 2/1 stability
- See Turco TP6.3
Duration of f_{NI} near 1 extended through operation at increased β_N without termination by a 2/1 NTM

- $\beta_N = 3.5-3.7$
- Surface voltage ≈ 0, indicating $f_{NI} \sim 1$, for $\approx 0.7\tau_R$
- Calculated $f_{NI} \approx 1$ and $f_{BS} \approx 0.65$
- Present limitations:
 - Available neutral beam energy limits duration
 - Neutral beam and ECCD power limit I_{NI}

Graph: Time evolution of β_N, f_{NI}, f_{BS}, and surface voltage. The goal is to achieve 0 V and $f_{NI} = 1$.
High initial I_i obtained using long ohmic phase to allow current to penetrate to the axis

- After H-mode transition, I_i decreases
 - Broad J_{BS} profile
 - J_{BS} peak in the H-mode pedestal
- All co-injection P_{beam} used to maximize β_N
- $q_{min} \approx 1$
\(\beta_N \) remains above 4 for 1 s as the current profile evolves

- Initially \(\beta_N \approx 4.5 \) is below \(4l_i \), the control room estimate for the ideal \(n = 1 \) no-wall stability limit
- Confinement well above standard H-mode value
 - Decreases as \(l_i \) drops
- Current profile not yet stationary
 - Future step in scenario development
MHD spectroscopy indicates a reduction in $n = 1$ kink mode stability at $\beta_{N}/l_i \approx 4$

- Indicator is change in slope of response (red points)
- Consistent with the ideal MHD no-wall kink stability limit near $4l_i$
With f_{NI} at or Above 1, the $l_i > 1$ Scenario is a Candidate for Steady-state Operation

- Measured surface voltage < 0
- Agrees with transport code modeling
- Calculated $f_{NI} \approx 1.2$
- Calculated $f_{BS} \approx 0.9$
Stabilization by coupling to an ideal wall is required to obtain high β_N with elevated q_{min} but not at high l_i.

- β_N is at the ideal-wall limit.
- Rotation or feedback is required to stabilize resistive wall modes.

Calculated ideal $n = \infty$ and $n = 1$ stability limits:

- β_N is near or below no-wall limit ($\approx 3.8l_i$).
- $\beta_N = 5$ should be possible at $l_i > 1.4$ without rotation or hardware to stabilize resistive wall modes.
Profiles of J_{IND} differentiate the near stationary elevated q_{min} scenario and the still transient high l_i discharge.

To convert to steady-state:
- Replace peaked J_{IND} with efficient on-axis CD
- Reduce H-mode pedestal J_{BS}

Good alignment between J_{NI} and J_{TOTAL}
- Small residual J_{IND}
Progress has been made on two different approaches to a steady-state scenario with high fusion gain

- **Elevated q_{min} scenario** has been optimized toward long duration operation with high β_N and $f_{NI} = 1$
 - Details of the discharge shape can have a significant effect on performance
 - Duration with surface voltage ≈ 0 extended at higher β_N without termination by a 2/1 tearing mode

- **In the high l_i scenario**, $\beta_N > 4.5$ obtained simultaneously with $f_{NI} > 1$ and $f_{BS} > 0.8$
 - Peak β_N is less than the ideal no-wall $n = 1$ stability limit
 - Indicates the possibility of steady-state operation with $q_{min} \approx 1$ without wall stabilization