Modulation of TEM Turbulence in DIII-D L-mode Discharges

by J.C. DeBoo¹

with

T.L. Rhodes,² L. Schmitz,² G.M. Staebler,¹ C. Holland,³ A.E. White,² E.J. Doyle,² W.A. Peebles ²

¹General Atomics, San Diego, California

²University of California-Los Angeles, Los Angeles, California

³University of California-San Diego, La Jolla, California

Presented at the
50th Annual Meeting
APS Division of Plasma Physics
Dallas, Texas

November 17-21, 2008

Introduction

Goal

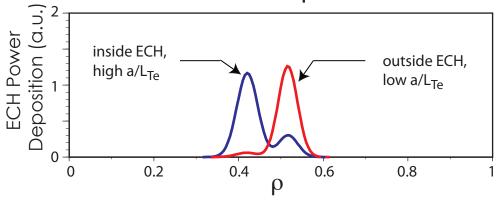
 Produce a set of detailed turbulence measurements that will allow a qualitative and quantitative comparison with driftwave stability code predictions

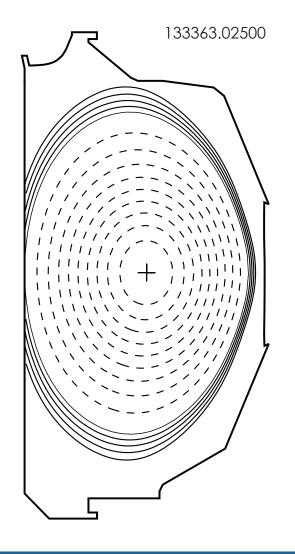
Method

- Choose a turbulence drive term to modulate and look for correlations in measured turbulence activity
- Focus on TEMs. Use ECH to modulate local value of ∇T_e and temperature gradient scale length a/LTe

Results

 Modulation of drive term resulted in modulation of measured turbulence amplitude and frequency. A good dataset obtained for code validation studies.

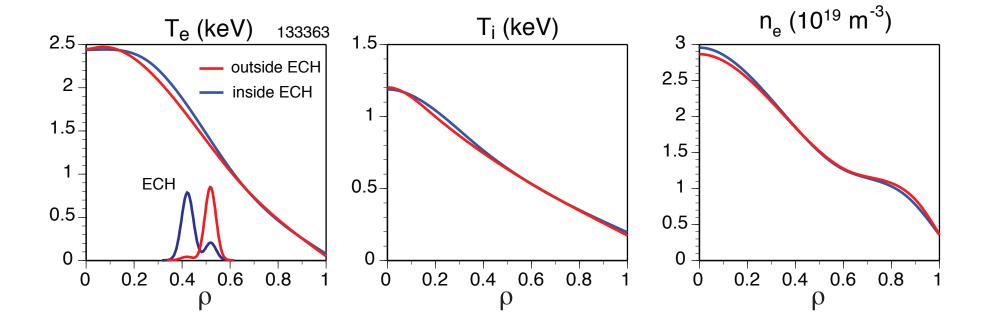

Target Discharge


L-mode discharge

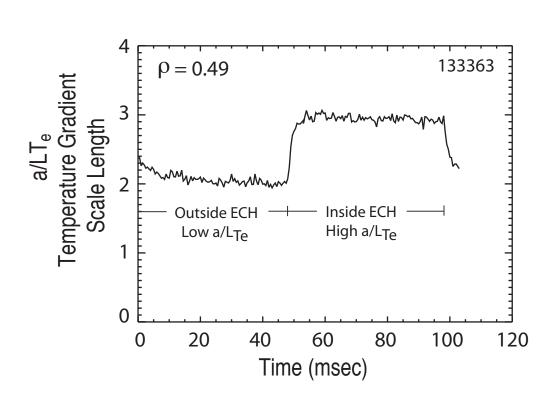
$$I_p = 0.8 \text{ MA}$$
 $B_T = 1.96 \text{ T}$
 $n_e = 2 \times 10^{19} \text{ m}^{-3}$
 $q_{lim} = 6.1$

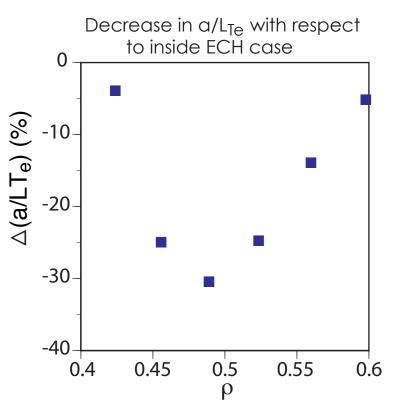
• Fluctuation diagnostics optimized for viewing ρ ~ 0.5, good spatial resolution required

~1.2 MW ECH at ρ =0.42, 0.52

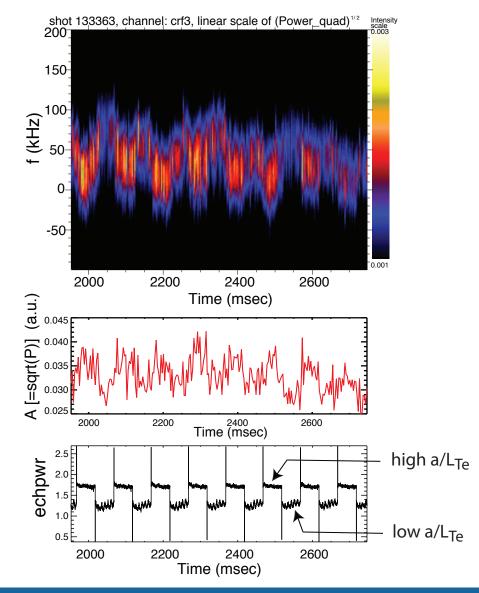


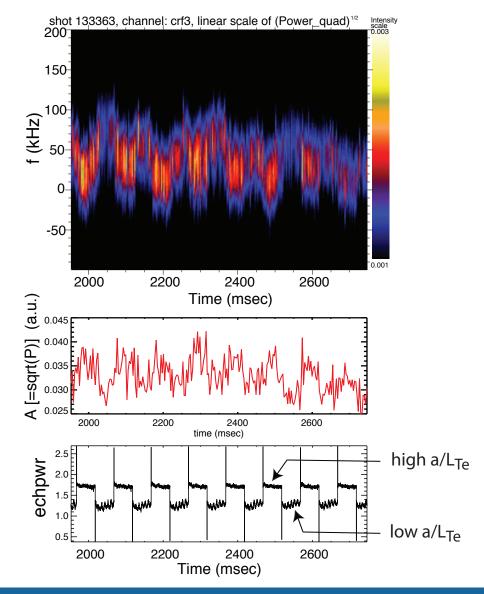
Very Little Change in Profiles with Inside and Outside ECH


• T_e/T_i ~ 2 favoring electron mode turbulence



Temperature Gradient Scale Length Decreased Up To 31% With Outside ECH And Variation Is Spatially Localized

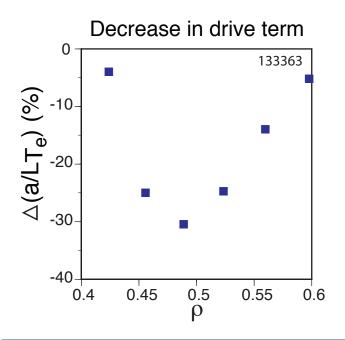

- Phase lock average ECE signals over 9 ECH periods, 2020 2920 ms
- Te computed by differencing adjacent ECE channels

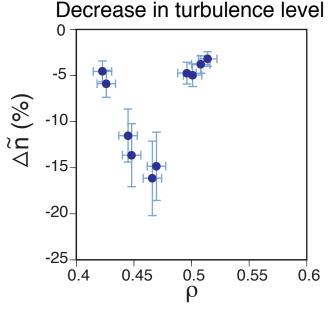

Amplitude and Frequency of Density Fluctuations Measured by Doppler Backscattering (DBS) Were Modulated

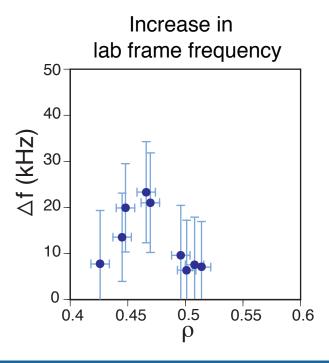
- DBS views poloidal density fluctuations at $k_{\theta} \sim 5$ 6 cm⁻¹ at r/a = 0.5 with good spatial resolution (~ 1 cm)
- Sign of the amplitude modulation is consistent with the variation in a/L_{Te}
- Modest modulation seen on FIR system viewing intermediate-k which spatially averages over ~half the plasma radius
- Little or no modulation of \widetilde{T}_e seen on CECE system at lower k_θ
 - possibly due to reduced sensitivity at r/a = 0.5

Amplitude and Frequency of Density Fluctuations Measured by Doppler Backscattering (DBS) Were Modulated

- DBS measures lab frame frequency $\mathbf{V}_{DBS} = \mathbf{V}_{ExB} + \mathbf{V}_{Dh}$
- V_{ExB} is in the ion diamagnetic drift direction while V_{ph} is in the electron diamagnetic drift direction for an electron mode:

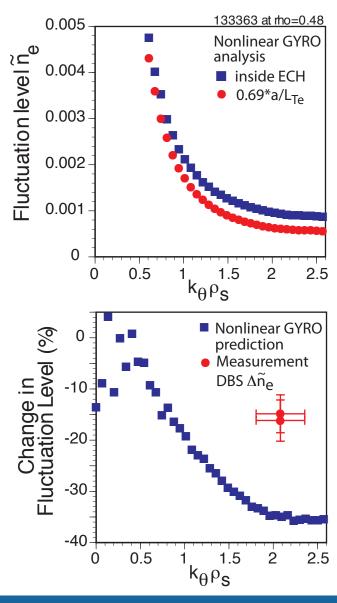

$$f_{DBS} = f_{ExB} - f_{turb}$$


- Measured an increase in f_{DBS} when a/L_{Te} decreased
 - consistent with a decrease in f_{turb} or an increase in f_{ExB} or both
- Preliminary nonlinear analysis indicates only small changes in f_{turb} , making the likely cause of an increase in f_{DBS} an increase in f_{ExB}



Intermediate-k (TEM scale) Density Fluctuations Measured By DBS Found To Be Positively Correlated With a/L_{Te} Drive

- Performed small spatial scan with DBS to obtain spatial extent of turbulence modulation
- Turbulence response is spatially localized to region where drive term was modulated
- 15% decrease in density fluctuation level observed at $k_{\theta} = 5.7$ cm⁻¹
- 20 kHz increase in lab frame frequency observed



Predicted Change In TEM-scale Turbulence Activity Is Factor 2 Larger Than Measured Change in Fluctuation Level

- Predictions performed with GYRO code
 - Nonlinear calculation of density turbulence for the high gradient case, then the gradient scale length is reduced by 31%, the measured value, to compute the growth rate in the low gradient case
- Direction of predicted change consistent with measurements
- Magnitude of predicted change about 2x larger than measured
- Caveats:
 - these preliminary results overpredict the experimental heat flux
 - synthetic module for DBS not yet implemented

Summary

- Target L-mode EC heated discharges were produced where intermediate-k,
 TEM scale turbulence was calculated to dominate ITG turbulence
- ECH was alternately applied at two spatial locations to modulate the local value of the temperature gradient scale length, a/LTe
- Changes in electron density turbulence measured at intermediate-k were well correlated with the repeated variation in a/LTe
- Comparisons with GYRO predictions were performed and showed that the predictions were consistent with the direction of the changes in the measured turbulence level and about factor 2 larger in magnitude
 - successful initial step toward detailed code validation studies

