Influence of Rotation and Error Field on Tearing Stability in Low Torque ITER-like Plasmas in DIII-D

by

Richard Buttery*, presented by Rob La Haye

with special thanks and considerable input from:

* EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK

Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, UK EPSRC, and US DOE

Presented at the 50th APS Annual Meeting of The Division of Plasma Physics
Dallas, Texas

November 17-21, 2008
Previous NTM & Error Field Study Raised Many Questions

DIII-D 2006/2007 showed lower rotation has lower 2/1 onset β_N
- and error fields can lower it further...

But:
• Is it tearing stability or triggering physics changing?
• Is counter rotation destabilising?
• How do error fields influence thresholds?
 - especially at low rotation

Understanding is important:
- Prevalence of 2/1 NTMs
- ECCD control requirements
- Error field correction needs
- Rotation requirements
• Extreme counter torque led to higher β_N thresholds...
New DIII-D Normal & Reverse I_p Data Continues Strong Trends
- but must remove profile variation from regime change

• Extreme counter torque led to higher β_N thresholds...
 - ...a profile effect:

 profiles change for reversed I_p
 strong counter rotation (\rightarrow no ELMs):
 - Core MHD goes away, (no ST or 3/2)
 - $r(q=2)$ lower, L_q higher
 - Core density peaking (+ no core MSE)
 \rightarrow Discard 3 most counter points
New DIII-D Normal & Reverse Ip Data Continues Strong Trends
- but must remove profile variation from regime change

- Extreme counter torque led to higher β_N thresholds...
 - ...a profile effect:

- Clear β fall with increasing counter rotation

Is remaining counter rotation trend a ‘real’ effect in underlying tearing physics?
Fall in Threshold with Counter Rotation is a Real Effect...

Consider only low rotation DIII-D data...

- Clear trend in β_N

![Graph showing a linear relationship between β_N and $M_A < 1\%$ with a $r^2 = 0.5399$ correlation.](image)
Fall in Threshold with Counter Rotation is a Real Effect...

Consider only low rotation DIII-D data...

- Clear trend in β_N
- Similar trend in local β_{Pe}
Fall in Threshold with Counter Rotation is a Real Effect

Consider only low rotation DIII-D data...

- Clear trend in β_N
- Similar trend in local β_{Pe}
- ...and in bootstrap measure (?)
 - noisier - more local gradients used
 (but no trends in profile parameters)

$$J_{\text{boot}} = \sqrt{\varepsilon_0} \frac{dP_e}{dR} / B_{\text{pol}}$$

37% effect

$$35\% \text{ effect}$$

$$r^2 = 0.5399$$

$$30\% \text{ effect}$$

$$r^2 = 0.104$$

$$37\% \text{ effect}$$

$$r^2 = 0.3985$$

MA $< 1\%$
Cross-machine Data Set Confirms Strong Rotation Role

- **DIII-D scans show:**
 - Less Mach \rightarrow lower β_N limit
 - More counter rotation is destabilising!

- **JT-60U beam mixing shows**
 - Consistent absolute thresholds
 - Similar (but steeper?) rotation effect

- **NSTX n=3 braking shows:**
 - Similar rate of effect at high rotation
 - Similar absolute levels in volume average $\langle \beta_N \rangle$ (NSTX x0.7 factor)

[Buttery et al., IAEA 2008]
ELMs ‘trigger’ about half the 2/1 NTMs:

- But trigger has no influence on NTM onset β_N
 - Points lie on trend
 - & trigger type not correlated with rotation

\rightarrow NTM onset β is not about “triggered seed exceeding threshold width” $\leftrightarrow \rho^*$ dependent

- but dictated by changes in the intrinsic tearing stability
Flow Shear Could Play the Stabilising Role

- **Theoretically flow shear impacts intrinsic tearing stability (through Δ')**
 - But flow and its shear are degenerate in DIII-D
 - See NSTX [1]
 - & see [2] for study of DIII-D saturated modes
 - Note for counter rotation flow shear reverses with respect to magnetic shear

See:
1. S. Gerhardt poster APS 2008 NP6.00100 We AM
2. R J La Haye poster APS 2008 JP6.00087 Tu AM
β_N Tearing Mode Formation

Hold β_N≈1.9 and vary torque from shot to shot then ramp error field

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...
 ...by rotation perturbation?

\[\beta_N \approx 1.9 \text{ and vary torque from shot to shot then ramp error field} \]

\[\begin{align*} \text{Error field threshold falls with torque} \\
\text{But rotating modes at low torque!} \\
\text{Intrinsic tearing stability is being modified...} \\
\text{...by rotation perturbation?} \end{align*} \]
Hold $\beta_N \sim 1.9$ and vary torque from shot to shot: then ramp error field

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...
 - ...by rotation perturbation?

Compare with counter torque (Δ)

- Error field thresholds are lower! (Could not operate at $\beta_N \sim 1.9$)
 - Despite **higher** natural mode rotations (not shown) and **lower** β_N values for counter torque modes
Conclusions

• DIII-D database extensions confirm strong role of rotation in tearing mode stability:
 - Increased counter rotation lowers β_N thresholds
 • A challenge to theory!
 - Behaviour related to changes in intrinsic tearing stability
 • Does this change predictions of a ρ^* dependence?
 - Trends seem validated by observations on other devices
 • $\langle \beta_N \rangle$ and Alfvén Mach number are the relevant parameters

• Error fields have strong effect at low torque and modest β_N
 - and demonstrate asymmetry between co and counter rotation
 - ITER baseline point just stable with modest co-rotation and good EF correction?
Reserve slides...
Hold $\beta_N \approx 1.9$ and vary torque from shot to shot:

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...
 - ...by rotation perturbation?

Compare with counter torque (Δ)
- Error field thresholds are lower!
 - Despite higher natural mode rotations and lower β_N values for counter torque modes

- Is this an asymmetry in the effect of rotation on island stability?
- Does proximity to intrinsic tearing limit raise error sensitivity?
Hold $\beta_N \sim 1.9$ and vary torque from shot to shot:

- Error field threshold falls with torque
- But rotating modes at low torque!

 • Intrinsic tearing stability is being modified...
 ...by rotation perturbation?

ITER relevant torques/rotations just stable with good error correction:

$$\delta B_{21}/B_T < 1.10^{-4}$$
DIII-D Negative Trend with Counter Rotation is Real Effect

Consider only low rotation DIII-D

- Clear trend in β_N
- Similar trend in local β_{Pe}
- And in ‘rough bootstrap’ term
 - Q. Is there a profile effect going on, or just increasing noise with more gradient terms?

ANSWER:
- Profiles show no systematic variations or trends with rotation
 - Local β_{Pe} dependence on rotation carries over to NTM drive...
 - Effect lost in J_{BS} mainly due to noise
Amount of Error Field Needed Depends on Proximity to NTM Limit at a Given Torque?

Full data set gives an interesting picture:

- Error fields ‘close the gap’ in β_N with NTM β_N limit (\circ)
 - note low β_N points needing little error field to lower β_N-onset further

- Is this a new error field amplification effect?
 - Brought on by proximity to classical tearing?
 - Or asymmetry in rotation influence?

- More points needed in low β_N near balanced region to extrapolate ITER sensitivity
Amount of Error Field Needed Depends on Proximity to NTM Limit at a Given Torque?

• β_N threshold falls as error fields increase

or equivalently

• Error field sensitivity increases at high β_N & low rotation

 – Should it?

 ...shielding still strong?

• Suggests revised error field correction requirements required for ITER at baseline and hybrid operating points
Saturated 3/2 Behaviour Shows Rotation Improves Intrinsic Stability

- Islands get bigger as rotation falls
 - Calculate matching Δ' from modified Rutherford eqn:

\[-r \Delta' = \frac{\sqrt{\varepsilon x} L_q r_s}{w L_{pe}} \]

(Helically Perturbed Bootstrap Term in MRE)

- Fits show mode less stable at low rotation
 - Larger w (note 1/w term)
- Not clear if rotation 1 or 2
 - ...or if sign dependence