Influence of Rotation and Error Field on Tearing Stability in Low Torque ITER-like Plasmas in DIII-D

by Richard Buttery*, presented by Rob La Haye

with special thanks and considerable input from:

S. Gerhardt, A. Isayama, R.J. La Haye, E.J. Strait, J. deGrassie, P. Gohil, C. Holcomb, G. Jackson, M. Maraschek, H. Reimerdes, M. Schaffer

* EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK

Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, UK EPSRC, and US DOE

Presented at the 50th APS Annual Meeting of The Division of Plasma Physics Dallas, Texas

November 17-21, 2008

Previous NTM & Error Field Study Raised Many Questions

DIII-D 2006/2007 showed lower rotation has lower 2/1 onset β_N – and error fields can lower it further...

Neutral Beam Torque (Nm)

Understanding is important:

- Prevalence of 2/1 NTMs
- ECCD control requirements

But:

- Is it tearing stability or triggering physics changing?
- Is counter rotation destabilising?
- How do error fields influence thresholds?

-especially at low rotation

- Error field correction needs
- Rotation requirements

R Buttery/APS/Nov2008

New DIII-D Normal & Reverse I_P Data Continues Strong Trends

• Extreme counter torque led to higher β_N thresholds...

R Buttery/APS/Nov2008

New DIII-D Normal & Reverse I_P Data Continues Strong Trends – but must remove profile variation from regime change

R Buttery/APS/Nov2008

New DIII-D Normal & Reverse I_P Data Continues Strong Trends – but must remove profile variation from regime change

- Extreme counter torque led to higher β_N thresholds...
 – ...a profile effect:
- Clear β fall with increasing counter rotation

Fall in Threshold with Counter Rotation is a Real Effect...

Fall in Threshold with Counter Rotation is a Real Effect...

Fall in Threshold with Counter Rotation is a Real Effect

Cross-machine Data Set Confirms Strong Rotation Role

• DIII-D scans show:

- Less Mach \rightarrow lower β_N limit
- More counter rotation is destabilising!

JT-60U beam mixing shows

- Consistent absolute thresholds
- Similar (but steeper?) rotation effect

• NSTX n=3 braking shows:

- Similar rate of effect at high rotation
- Similar absolute levels in volume average $<\beta_N>$ (NSTX x0.7 factor)

[Buttery et al., IAEA 2008]

ELM Role in 2/1 Triggering Appears Incidental (and No Correlation at all with Sawteeth)

ELMs 'trigger' about half the 2/1 NTMs:

- But trigger has no influence on NTM onset β_{N}
 - Points lie on trend
 - & trigger type not correlated with rotation

NTM onset β is <u>not</u> about "triggered seed exceeding threshold width" ←ρ* dependent

 but dictated by changes in the intrinsic tearing stability

Neutral Beam Torque (Nm)

Flow Shear Could Play the Stabilising Role

- Theoretically <u>flow shear</u> impacts intrinsic tearing stability (through Δ')
 - But flow and its shear are degenerate in DIII-D
 - \rightarrow see NSTX [1]
 - & see [2] for study of DIII-D saturated modes
 - Note for counter rotation flow shear reverses with respect to magnetic shear

See:

¹S. Gerhardt poster APS 2008 NP6.00100 We AM ²R J La Haye poster APS 2008 JP6.00087 Tu AM

R Buttery/APS/Nov2008

Error Fields Assist Medium β_N Tearing Mode Formation

Hold β_N ~1.9 and vary torque from shot to shot: then ramp error field

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...
 - ... by rotation perturbation?

(◆ Similar to advanced scenario observations of Reimerdes: PO3.00011)

R Buttery/APS/Nov2008

Error Fields Assist Medium β_N Tearing Mode Formation

• Despite <u>higher</u> natural mode rotations (not shown) and <u>lower β_N values for counter torque modes</u>

Conclusions

- DIII-D database extensions confirm strong role of rotation in tearing mode stability:
 - Increased counter rotation lowers β_N thresholds
 - A challenge to theory!
 - Behaviour related to changes in intrinsic tearing stability
 - Does this change predictions of a ρ^{\ast} dependence?
 - Trends seem validated by observations on other devices
 - < β_N > and Alfvén Mach number are the relevant parameters
- Error fields have strong effect at low torque and modest β_N
 - and demonstrate asymmetry between co and counter rotation
 - ITER baseline point just stable with modest co-rotation and good EF correction?

Reserve slides...

R Buttery/APS/Nov2008

Error Fields Assist Medium β_N Tearing Mode Formation

Hold $\beta_N \sim 1.9$ and vary torque from shot to shot:

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...

... by rotation perturbation?

Compare with counter torque (

- Error field thresholds are lower!
 - Despite <u>higher</u> natural mode rotations and <u>lower β_N </u> values for counter torque modes
 - Is this an asymmetry in the effect of rotation on island stability?
 - Does proximity to intrinsic tearing limit raise error sensitivity?

Error Fields Assist Medium β_N Tearing Mode Formation

- Error field threshold falls with torque
- But rotating modes at low torque!
 - Intrinsic tearing stability is being modified...
 - ... by rotation perturbation?

DIII-D Negative Trend with Counter Rotation is Real Effect

Consider only low rotation DIII-D

- Clear trend in β_N
- Similar trend in local β_{Pe}
- And in 'rough bootstrap' term
 - Q. Is there a profile effect going on, or just increasing noise with more gradient terms?

ANSWER:

- Profiles show no systematic
 variations or trends with rotation
 - Local β_{Pe} dependence on rotation carries over to NTM drive...
 - Effect lost in J_{BS} mainly due to noise

Amount of Error Field Needed Depends on Proximity to NTM Limit at a Given Torque?

Full data set gives an interesting picture:

• Error fields 'close the gap' in β_N with NTM β_N limit (o)

- note low $β_N$ points needing little error field to lower $β_{N-onset}$ further
- Is this a new error field amplification effect?
 - Brought on by proximity to classical tearing?
 - Or asymmetry in rotation influence?

• More points needed in low β_N near balanced region to extrapolate ITER sensitivity

R Buttery/APS/Nov2008

Amount of Error Field Needed Depends on Proximity to NTM Limit at a Given Torque?

 Suggests revised error field correction requirements required for ITER at baseline and hybrid operating points

Saturated 3/2 Behaviour Shows Rotation Improves Intrinsic Stability

- Islands get bigger as rotation falls \rightarrow
 - Calculate matching Δ' from modified Rutherford eqn:

- Fits show mode less stable at low rotation
 - Larger w (note 1/w term)
- Not clear if rotation ^1 or ^2
 - ... or if sign dependence

