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Summary of Results

® Time history of Te/Te during single discharge reveals changes in
amplitude in L-mode, H-mode and Ohmic plasmas

e Electron temperature fluctuations, Te/Te, and density fluctuations, fi/n,
have similar spectra, amplitudes and increase with radius

e GYRO predicts Te/Te ~ fie/Ne, consistent with observations.
GYRO/synthetic diagnostics do not fully reproduce increase in
fluctuation level with radius.

® Electron Cyclotron Heating (ECH) during beam heated L-mode plasmas
results in increased Te/Te, but not n/n
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Comparisons Using Both Electron Temperature and Density

Fluctuations Provide Rigorous Tests of Gyrokinetic Simulations

® Several types of instabilities may contribute to electron heat and
particle transport in the tokamak
—lon temperature gradient (ITG) mode (k9ps <1),
—Trapped electron mode (TEM) ( kops < 2)
—Electron temperature gradient (ETG) mode ( kgps > 2)

* Measurements of Te probe physics of non-Boltzmann electron response

—In simulations, electron heat and particle transport result from non
Boltzmann (non-adiabatic) electrons (Ross 2002, Dannert 2005, Kinsey 2005)

— The pure ITG mode (Boltzmann-response) is not associated with
electron temperature fluctuations

— Non-Boltzmann electrons destabilize ITG mode. Trapping allows for TEM.

® Core electron temperature and density fluctuations both contribute
to energy transport flux (Liewer 1985, Wootton 1990, Ross 1992)

3, _ 3 ~ 3 -
D"’-D Qe = _<pevr> — _ne<Tevr> + 5T6<nevr>
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Correlation Electron Cyclotron Emission (CECE) Diagnostic

Measures Local, Low-k Eleciron Temperature Fluctuations
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Beam Emission Spectroscopy (BES) Diagnostic

Measures Local, Low-k Density Fluctuations

® CECE and BES diagnostics sample
volumes are separated toroidally and
vertically, but measure at same radius

2" q Harmonic
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Outline

 Temporal evolution of electron temperature fluctuations

e Comparison between electron temperature and density
fluctuations in beam heated L-mode plasmas

« Comparison with linear and nonlinear simulations

« Comparison of electron temperature and density fluctuations
In ECH experiment
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Temperature Fluctuations Are Measured in L-mode,

H-mode and Ohmic Plasmas in a Single Discharge
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Spectra Evolve in Time, with Large Reduction in

Te/Te After L-H Transition

* Typical cross-power spectra
of Te/Te atr/a =0.74

— Spectrum broadens and
narrows in response to Doppler
shifts due to changing ExB
rotation

— Normalized fluctuation levels in
Ohmic (1%) are lower than
L-mode (1.5%) at same radius

— H-mode temperature
fluctuations are below
sensitivity limit (0.5%, 35 ms)

H-mode results are consistent with
QH-mode experiments, a
factor 5 reduction has been

observed at same radius
(L. Schmitz et al., PRL,
accepted for publication)
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Outline

e« Temporal evolution of temperature fluctuations

« Comparison between temperature and density
fluctuations in beam heated L-mode plasmas

e« Comparison with linear and nonlinear simulations

« Comparison of temperature and density fluctuations in
ECH experiment
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The Profile of Temperature Fluctuations in L-mode

Is Compared to the Profile of Density Fluctuations
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Plasma Profiles, Plasma Frequencies, and

Optical Depth in L-mode Plasma of Interest
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Temperature and Density Fluctuations Have Similar Spectra

and Normalized Fluctuation Amplitudes in L-mode
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Profiles of Temperature and Density Fluctuations Are

Similar During Beam Heated L-mode

Relative fluctuation levels (%) ° Te/Te and n/n measured
"""" RERREREEEE R between 0.3<r/a<0.9

20 = n/n
- T/ * Spectra are integrated
150 between 40-400 kHz
e Te/Te are below sensitivity
1.0 limit(0.2%, 400 ms) inside
i r/a <0.5
0.5F
-ﬁ i  Presence of large electron
00t T..T , | . temperature fluctuations suggests
0. 3 0 5 0_7 0.9 non-Boltzmann electron response
Radius r/a
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Outline

e« Temporal evolution of temperature fluctuations

e Comparison between temperature and density
fluctuations in beam heated L-mode plasmas

e Comparison with linear and nonlinear simulations

« Comparison of temperature and density fluctuations in
ECH experiment

llllllll



Growth Rate of Most Unstable Mode Increases

With Radius, Consistent With Measured Fluctuations
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e TGLF (Trapped gyro-Landau-fluid)
code used for linear stability

analysis J. E. Kinsey BI2.00006,
G. Staebler UP8.00050

e ITG mode (freaL < 0) Is fastest
growing mode for long
wavelengths in CECE range

—Te associated with ITG mode

* |inear growth rate of fastest
growing mode (TEM) peaks
at kigps ~ 0.7

e Transport fluxes peak
at longer wavelengths
kops~ 0.2 atr/a =0.75



Compare Measured Te/Te and fi/n With Results

From Local, Nonlinear GYRO Simulations

® Comparisons between profiles of two fluctuating fields and
nonlinear gyrokinetic simulations provide unique and
challenging tests of the turbulence models

— GYRO is an initial value, Eulerian (Continuum) 5-D
gyrokinetic transport code

— Local simulations include real geometry, drift-kinetic
electrons, e-i pitch-angle collisions, realistic mass ratio and
equilibrium ExB flow

— Take experimental profiles (Te, Ti, Ne, Er) as input
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Synthetic Diagnhostics Are Used to Calculate

RMS Fluctuation Amplitudes from GYRO Output

*Synthetic diagnostics use Point Spread
Functions (PSFs) to model spatial sensitivity
of CECE and BES diagnostics

C. Holland UP8.00053

GYRO results
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GYRO Predicts T_/T_ and n_/n_ are Similar in Amplitude

but Radial Profile Trend is not Reproduced

Relative fluctuation levels (%)
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GYRO Predicts Temperature Fluctuations Drive 80%

of Heat Flux atr/a = 0.5

e GYRO flux-tube simulation at

1.5
i r/a = 0.5 has good agreement
S 103 with experiment
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QYRO Predicts the Phase Difference Between

Te and Ne INn the L-mode Plasma atr/a = 0.5

cross—phase (rad)

* Phase between density and
potential fluctuations: ~ 0
—small transport contribution

i1 » Phase between temperature
and potential fluctuations: ~ —7r
= large transport contribution
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Phase between ne and Te could be
measured in future experiments

using CECE and reflectometry



Outline

e« Temporal evolution of temperature fluctuations

e Comparison between temperature and density
fluctuations in beam heated L-mode plasmas

e« Comparison with linear and nonlinear simulations

« Comparison of temperature and density fluctuations in
ECH experiment
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Experiment Using Local ECH to Change

Local Te Gradient and Turbulence Drives
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Increases in Heat Flux and TEM Growth Rate Correlate

With Increase in Te/Te, but fi/n Does Not Change
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Summary of Results

* Time history of Te/Te during single discharge reveals changes in
amplitude in L-mode, H-mode and Ohmic plasmas

e Electron temperature fluctuations, Te/Te, and density fluctuations, fi/n,
have similar spectra, amplitudes and increase with radius

e GYRO predicts Te/Te ~ fie/Ne, consistent with observations.
GYRO/synthetic diagnostics do not fully reproduce increase in
fluctuation level with radius.

® Electron Cyclotron Heating (ECH) during beam heated L-mode plasmas
results in increased Te/Te, but not n/n
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