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Motivation

e Locking of 2/1 Tearing Mode very likely in ITER (due to reduced
NBI torque and consequent low rotation)

e Locking is a recurrent cause of disruptions

e ECCD suppresses rotating NTMs
e However, island can lock in a position not accessible by ECCD:

Poloidal

Top View ECCD
section

deposition




Motivation

e Locking of 2/1 Tearing Mode very likely in ITER (due to reduced
NBI torque and consequent low rotation)

e Locking is a recurrent cause of disruptions

e ECCD suppresses rotating NTMs
e However, island can lock in a position not accessible by ECCD:

Poloidal

ECCD
section

deposition




Motivation

e Locking of 2/1 Tearing Mode very likely in ITER (due to reduced
NBI torque and consequent low rotation)

e Locking is a recurrent cause of disruptions

e ECCD suppresses rotating NTMs
e However, island can lock in a position not accessible by ECCD:

Top View ECCD
deposition

Poloidal
section




Magnetic Perturbations Can Unlock and Reposition or Spin

the Mode and So Assist Its ECCD Control

Bootstrap deficit = island = wire carrying ctr-current = wire can be
moved by external B

Approach 1 (“preferential locking”):
Island is dragged into a new position accessible by gyrotrons.
ECCD: CW

Approach 2 (“sustained rotation” or “entrainment”):
Externally applied rotating B unlocks the mode and forces it to rotate.
ECCD: CW or modulated

Both Approaches can also be applied pre-emptively,
for Locked Mode Avoidance




Mirnov Coils (poloidal field sensors)
measure mode amplitude at >100Hz

Mirnov Coils+Frequency Counter

measure angular frequency of mode,
detect slowing down

Saddle loops (radial field sensors)
measure mode amplitude at <100Hz.
Suitable for “born locked” modes

Magnetic Measurements Detect Locked Mode
or Imminent Locking and Trigger Response
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Slowly Rotating Field Used to Drag Plasma

and Toroidally Align Island to ECCD
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The Island, Rotated by Magnetic Perturbations

and llluminated by ECCD, Changes Amplitude

Shot 126623 2 msec data smoocthing — offsets zeroed at @000 msec
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Subtraction of Vacuum Field Confirms That Locked Mode Changes

Amplitude When Toroidally Steered in Presence of ECCD
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Radial Jog of Plasma at Fixed Optimum Phase for O-Point: Mode

Amplitude Decreases With ECCD Aligned, Increases When ECCD is off
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Proof of Principle of Fast Sustained Rotation

No ECCD Yet
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Summary and Conclusions

« Demonstrated “Preferential Locking” of NTM to a (static) toroidal
phase such that it can be accessed by ECCD for stabilization

< Optimal toroidal phase was found by slowly steering the mode
(0.66Hz) while applying cw ECCD

< ECCD radially aligned to locked island as to rotating ones
e Reduction of mode amplitude from 6 to 3G with 1.2MW ECCD
— Future work: more power and good alignment for t>=400ms

« Sustained Mode Rotation up to 60Hz by means of I-coll travelling
wave

< Travelling wave needs to be applied gently (0-60Hz ramp in 1s)

— Future work: add ECCD, modulated at frequency and phase of
applied rotation






