Prediction of Sawtooth Periods in Fast-Wave Heated DIII-D Experiments Using Extensions of the Porcelli Model

by A.T. Turnbull

with M. Choi^{*}, L.L. Lao^{*}, V.S. Chan^{*}, M.S. Chu^{*}, Y.M. Jeon[‡], G. Li[§], Q. Ren[§], N. Gorelenkov[†]

*General Atomics, San Diego, California. [‡]Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA [§]Academy of Sciences Institute of Plasma Physics, China [†]Princeton Plasma Physics Laboratory, Princeton, New Jersey

Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics Orlando, Florida

November 12-16, 2007

Kinetic Fast Ion Pressure Can Stabilize Ideal Internal Kink Mode Involved in Sawteeth

- Experiments with large fast ion pressure exhibit long sawtooth periods followed by a giant sawtooth:
 - ⇒ Interpreted as stabilization of ideal internal kink by fast ion kinetic effects

Porcelli model developed for deciding when a sawtooth is triggered

- Contributions from ideal and kinetic effects from fast and thermal ions
- Intended to be used in conjunction with 1 1/2 D transport models:
 - o Model is semi-phenomenological and ad-hoc
 - o Original form utilizes simplified models for the individual contributions
- Porcelli model successfully predicts qualitative sawtooth behavior in JET, TCV, and ASDEX experiments:
 - Average sawtooth periods in transport simulations
 - Changes in sawtooth period with evolving discharge conditions

Can the Porcelli Model be used quantitatively to predict a specific sawtooth crash in an actual discharge?

Porcelli Model Can Account For Change in Sawtooth Behavior and Predict the Giant Sawtooth Period

- We quantitatively tested the Porcelli model in DIII-D using:
 - Reconstructed DIII-D discharge equilibria from several times within a sawtooth cycle
 - More realistic numerical models for the individual contributions
- Porcelli sawtooth crash criteria evaluated over first giant sawtooth cycle reproduces the time of crash quantitatively:
 - Discharge equilibria reconstructed from EFIT
 - Numerically calculated γ_{ideal} from GATO for the reconstructed equilibria
 - Numerically calculated pressure from:
 - ORBIT-RF using non-Maxwellian ion distribution with finite orbits (ORBIT : R.White, Phys. Plasma 2 (1995)) and
 - o RF wave field from TORIC

(M. Brambilla, Plasma Phys. Control. Fusion 41 (1999))

Key is accurate evaluation of the discharge equilibria

The Porcelli Sawtooth Trigger Model Is Based on the Linear Stability Threshold Against the 1/1 MHD Mode

Basic Model: unstable ideal kink stabilized by kinetic effects

Condition for instability of the $\delta \hat{W}_{\rm MHD} < 0$ ideal internal kink mode:

Ideal internal kink	$\delta W_{Th} > 0$ and
mode stabilized by	$\delta \hat{W}_{fast} > 0$

((Porcelli, Plasma Phys. Control. Fusion 38 (1996))

Sawtooth instability is triggered when one of three criteria is satisfied:

$$\delta \hat{W} = \delta \hat{W}_{MHD} + \delta \hat{W}_{Th} + \delta \hat{W}_{fast}$$

Ideal mode not $-(\delta \hat{W}_{MHD} + \delta \hat{W}_{Th}) > c_h \omega_{Dh} \tau_A$ Fast trapped ion effect stabilized by fast ions Modified Ideal Mode Ideal mode not $-\delta \hat{W} > 0.5\omega_{*i}\tau_{A}$ **Diamagnetic effect** stabilized by fast $\left[-c_{\rho}\hat{\rho} < -\delta\hat{W} < 0.5\omega_{*i}\tau_{A}\right]$ ion+ion diamagnetic $\frac{-c_{\rho}\rho}{\left|s_{1} \equiv r_{1}\frac{dq}{dr}\right|_{r_{1}}} > s_{crit}$ **Resistive**/ frequency **Ion-kinetic** Nonideal layer effect Mode Non-ideal resistive or ion kinetic effects

Porcelli Model Evaluated Using Ideal Contribution to Perturbed Energy and Numerical Fast Ion Pressure

Fast Wave Accelerates Beam Ions In DIII-D Discharge #96043 Leading to Modified Sawtooth Behavior

Conventional interpretation:

Fast ions stabilize ideal kink Sawtooth is delayed and occurs after internal energy has built up, producing a delayed, much larger "giant sawtooth"

> Porcelli sawtooth crash criteria are evaluated for discharge equilibria every 40 msec during the first giant sawtooth cycle

Ideal and Fast Particle Contributions to Porcelli Model Numerically Calculated for Reconstructed Equilibria

• GATO ideal result more unstable than analytic or numerically fitted formulas normally used in Porcelli model

- Fast particle contribution from numerically computed fast ion pressure:
 - **TORIC code calculates** $E^m_+(\rho) \quad k^m_{\prime\prime} \quad k^m_\perp$
- Resonant kicks from RF wave are modeled In ORBIT-RF using stochastic quasi-linear diffusion operator:

$$D_{\perp l}(k_{\prime\prime}) = \mu \,\delta(\omega_l) \,\frac{\pi B}{m_i} K$$
$$\times \sum_{\mathbf{m}'} \left[E_{+}^{\mathbf{m}'} J_{l-1} \left(k_{\perp}^{\mathbf{m}'} \rho_i \right) \right]^* \,\sum_{\mathbf{m}} \left[E_{+}^{\mathbf{m}} J_{l-1} \left(k_{\perp}^{\mathbf{m}} \rho_i \right) \right]$$

- Diffusion in velocity space treated as random walk in μ:
 - kicks from resonant interaction between ions and wave

$\delta \hat{W}_{fast}$ is Sensitive to Calculated β_{ph} due to Monte-Carlo Noise and Uncertainty in Reconstructed s₁

- s_1 increases as β_{ph} saturates $\Rightarrow \delta W_{fast}$ decreases
- Estimated 30% uncertainty in s₁ and β_{ph} $\delta \boldsymbol{\widehat{W}}_{\text{fast}}$ $\beta_{\rm ph} = 0.21$ 0.6 0.03 0.4 ncertaintv 0.02 0.2 β_{ph} 0.01 0 0 0.4 0.3 1820 1860 1900 1980 2020 0.5 0.6 1940 S₁ Time (ms)

• Uncertainty in s_1 and β_{ph}

in δW_{fast}

translates into uncertainty

Stability Evaluation Using ORBIT-RF/GATO For First Giant Sawtooth In Agreement With Experimental Crash Time

NERAL ATOMICS

Porcelli Model Applied to Sequence of Reconstructed **DIII-D** Discharge Equilibria Works Remarkably Well

- Model using ORBIT-RF/TORIC/GATO numerical input yields results quantitatively in agreement with experimental sawtooth crash:
 - Trigger quantitatively agrees with crash time for first giant sawtooth
- Sawtooth trigger is the ion kinetic regime mode:
 - From decreasing fast ion stabilization as s₁ increases faster than β_{ph} : ____
 - Kinetic stabilizing contribution of fast ions is sensitive to:
 - Ο

•

- Magnetic shear at q = 1 surface Poloidal beta of trapped fast ions inside q=1 surface $\delta \hat{W}_{fast} \propto \beta_{ph} / s_1$ Ο
- Predictions using analytic formula or formula fitted to ideal kink numerical stability calculation database do not yield quantitative agreement
- Stability evaluation for subsequent sawtooth crash is also consistent with experimental sawtooth crash time:

 $-\delta \hat{W} \sim 0.5 \omega_{*i} \tau_A$ through most of the cycle within 30% nominal uncertainty

Analysis is ongoing to evaluate uncertainties and quantitatively check crash criteria

NOVA-K simulations planned to verify conclusions from Porcelli model

Ideal Kink Mode Unstable Through Sawtooth Cycle With Mode Structure Only Approximately "Top-Hat"

"Top-Hat" structure assumed in Bussac model

GATO result more unstable than analytic or numerically fitted formulas normally used in Porcelli model

Resonant Kicks From RF Are Modeled In ORBIT-RF Using Stochastic Quasi-Linear Diffusion Operator

- TORIC calculates wave fields $E^m_+(\rho) = k^m_{//} = k^m_{\perp}$ from antenna carrying unit current:
 - Single toroidal mode
 - *-15* ≤ *m* ≤ +15

$$|E+|^{2}(\rho,\theta) = \sqrt{\frac{P_{\exp}}{R_{Toric}}} \times \operatorname{Re}\left[\sum_{m'} (E^{m'}(\rho)e^{im'\theta})^{*} \sum_{m} E^{m}(\rho)e^{im\theta}\right]$$

- $E_{+}^{m}(\rho)$ from TORIC scaled to match experimental input power:
 - ⇒ Complete absorption of input power according to linear theory
- Quasi-linear RF Diffusion operator in ORBIT-RF due to wave field:

Magnetic Moment Undergoes Quasi-Linear Diffusion on Each Interaction With Resonant Wave Field

- Quasi-linear diffusion in velocity space modeled as random walk with kicks from resonant interaction between ions and wave
 - Kicks are random and small at typical experimental power levels

 Δt = interaction time in resonance region

