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Kinetic Fast Ion Pressure Can Stabilize Ideal Internal

Kink Mode Involved in Sawteeth

• Experiments with large fast ion pressure exhibit long sawtooth

periods followed by a giant sawtooth:

Interpreted as stabilization of ideal internal kink by fast ion kinetic effects

– Intended to be used in conjunction with 1 1/2 D transport models:

o Model is semi-phenomenological and ad-hoc

o Original form utilizes simplified models for the individual contributions

• Porcelli model successfully predicts qualitative sawtooth behavior

in JET, TCV, and ASDEX experiments:

– Average sawtooth periods in transport simulations

– Changes in sawtooth period with evolving discharge conditions

Porcelli model developed for deciding when a sawtooth is triggered

– Contributions from ideal and kinetic effects from fast and thermal ions

Can the Porcelli Model be used quantitatively to predict a specific

sawtooth crash in an actual discharge?



Porcelli Model Can Account For Change in Sawtooth

Behavior and Predict the Giant Sawtooth Period

• Porcelli sawtooth crash criteria evaluated over first giant sawtooth
cycle reproduces the time of crash quantitatively:

– Discharge equilibria reconstructed from EFIT

– Numerically calculated ideal  from GATO for the reconstructed equilibria

– Numerically calculated pressure from:

o ORBIT-RF using non-Maxwellian ion distribution with finite orbits

(ORBIT : R.White, Phys. Plasma 2 (1995)) and

o RF wave field from TORIC

(M. Brambilla, Plasma Phys. Control. Fusion 41 (1999))

• We quantitatively tested the Porcelli model in DIII-D using:

– Reconstructed DIII-D discharge equilibria from several times within a

sawtooth cycle

– More realistic numerical  models for the individual contributions

Key is accurate evaluation of the discharge equilibria



The Porcelli Sawtooth Trigger Model Is Based on the

Linear Stability Threshold Against the 1/1 MHD Mode

Sawtooth instability is triggered when one of three criteria is satisfied:
((Porcelli, Plasma Phys. Control. Fusion 38 (1996))
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Condition for instability of the
ideal internal kink mode:

ˆ W MHD < 0 Ideal internal kink
mode stabilized by

ˆ W Th > 0 and
ˆ W fast > 0

Basic Model: unstable ideal kink stabilized by kinetic effects
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Fast Wave Accelerates Beam Ions In DIII-D Discharge

#96043 Leading to Modified Sawtooth Behavior

 PRF on (1.0MW)

 Giant
sawtooth

Fast ions stabilize ideal kink

 Sawtooth is delayed and occurs

after internal energy has built up,

producing a delayed, much larger

“giant sawtooth”

Conventional

interpretation:

Porcelli sawtooth crash

criteria are evaluated

for discharge equilibria

every 40 msec during

the first giant sawtooth

cycle

DIII-D 96043: 60 MHz Fast Wave at 4 D
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Ideal and Fast Particle Contributions to Porcelli Model

Numerically Calculated for Reconstructed Equilibria

Ideal unstable

Ideal stable

• GATO ideal result more unstable
than analytic or numerically

fitted formulas  normally used in

Porcelli model
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• Resonant kicks from RF wave are
modeled In ORBIT-RF using

stochastic quasi-linear diffusion
operator:

• Fast particle contribution from
numerically computed fast

ion pressure:

• TORIC code calculates

• Diffusion in velocity space
treated as random walk in μ:

– kicks from resonant
interaction between ions
and wave



Wfast is Sensitive to Calculated ph due to Monte-Carlo

Noise and Uncertainty in Reconstructed s1

• Uncertainty in s1 and ph

translates into uncertainty
in Wfast

• s1 increases as ph saturates

Wfast decreases

Estimated 30% uncertainty in s1 and ph
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Stability Evaluation Using ORBIT-RF/GATO For First Giant

Sawtooth In Agreement With Experimental Crash Time
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Nonideal layer effect:
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Porcelli Model Applied to Sequence of Reconstructed

DIII-D Discharge Equilibria Works Remarkably Well

• Model using ORBIT-RF/TORIC/GATO numerical input yields results

quantitatively in agreement with experimental sawtooth crash:

– Trigger quantitatively agrees with crash time for first giant sawtooth

• Sawtooth trigger is the ion kinetic regime mode:

– From decreasing fast ion stabilization as s1 increases faster than ph:

– Kinetic stabilizing contribution of fast ions is sensitive to:
o Magnetic shear at q = 1 surface

o Poloidal beta of trapped fast ions inside q=1 surface

 
 
 

ˆ W fast ph /s1

• Predictions using analytic formula or formula fitted to ideal kink numerical

stability calculation database do not yield quantitative agreement

• Stability evaluation for subsequent sawtooth crash is also consistent with

experimental sawtooth crash time:

           through most of the cycle within 30% nominal uncertainty

– Analysis is ongoing to evaluate uncertainties and quantitatively check
crash criteria

ˆ W ~ 0.5 *i A

NOVA-K simulations planned to verify conclusions from Porcelli model



Ideal Kink Mode Unstable Through Sawtooth Cycle

With Mode Structure Only Approximately “Top-Hat”
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Resonant Kicks From RF Are Modeled In ORBIT-RF

Using Stochastic Quasi-Linear Diffusion Operator
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• Quasi-linear RF Diffusion operator in ORBIT-RF due to wave field:

Bessel
Function

Larmor
radius

Resonance
condition:
Single wave

harmonic l

Left-hand
polarized field

Perpendicular
wavenumber

Parallel
wavenumber

K = K( , ˙  l , ˙ ̇  l , ˙  , ˙ ̇  ) ˙  l = 0 lv. ˙ k //v// k// ˙ v //

l = l k//v// =
qB

m

E+
m ( ) k//

m km• TORIC calculates wave fields

   from antenna carrying unit current:

— Single toroidal mode

— -15  m  +15

| E+ |2 ( , ) =
Pexp
RToric

Re (E  m ( )ei  m )* E m ( )eim

m m 

 

 
 

 

 
 

– E+
m( ) from TORIC scaled to match experimental input power:

Complete absorption of input power according to linear theory



Magnetic Moment Undergoes Quasi-Linear Diffusion

on Each Interaction With Resonant Wave Field

μrf = μrf + Rs μrf
2

• Quasi-linear diffusion in velocity space modeled as random walk

with kicks from resonant interaction between ions and wave
Kicks are random and small at typical experimental power levels

 t = interaction time in resonance region
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