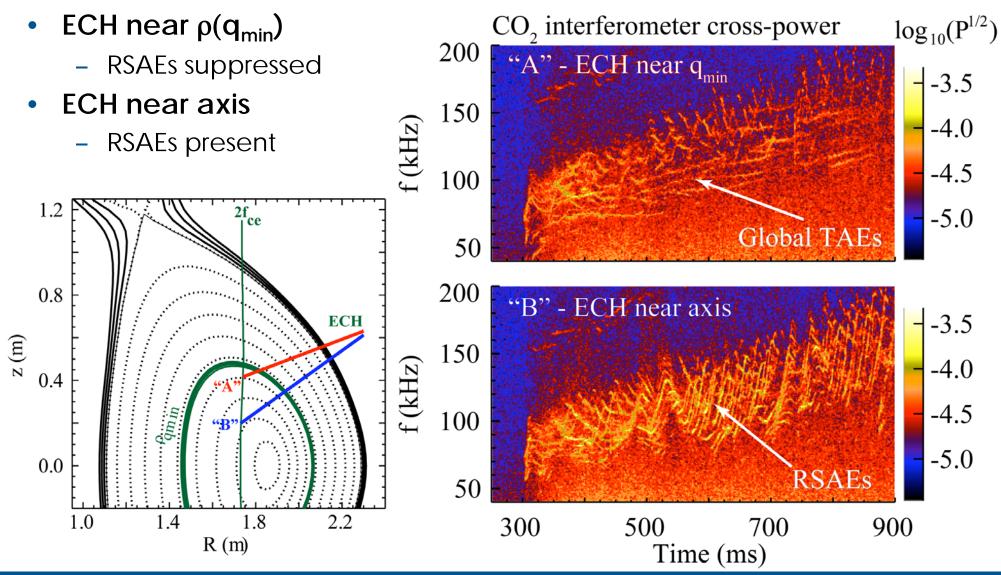
Effect of Reverse Shear Alfvén Eigenmodes on Delivered Neutral Beam Torque

by Wayne Solomon

In collaboration with M.A. Van Zeeland^{*}, K.H. Burrell^{*}, R. Budny[#], J.S. deGrassie^{*}, W. W. Heidbrink[†], G.J. Kramer[#], M.A. Makowski[‡], D. Mikkelsen[#], R. Nazikian[#], C.C. Petty^{*}, S.D. Scott[#], and M.C. Zarnstorff[#] [#]Princeton Plasma Physics Laboratory, Princeton, NJ ^{*}General Atomics, San Diego, CA [†]University of California, Irvine, CA [‡]Lawrence Livermore National Lab., Livermore, CA

Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics Orlando, Florida

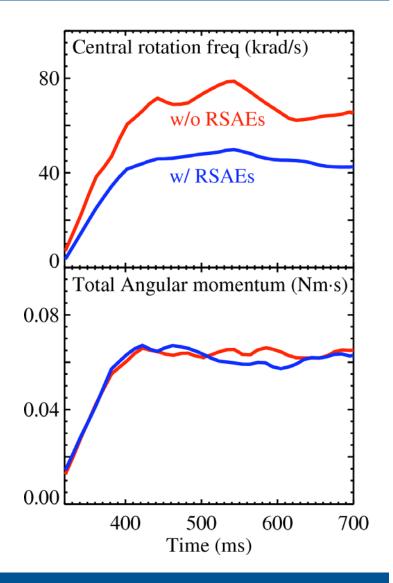
November 12-16, 2007



Motivation

- Rotation affects broad range of issues in fusion plasmas
- Understanding momentum transport requires knowledge of sources
- Most high performance plasmas have some level of Alfvén Eigenmode (AE) instabilities, eg
 - Reverse Shear Alfvén Eigenmodes (RSAE)
 - Toroidicity Induced Alfvén Eigenmodes (TAE)
- Experiments show that these modes are capable of redistributing fast ions
 - Fast ion transport is not classical
- Such modes may complicate momentum transport studies
 - Difficult to assess transport if cannot calculate the source

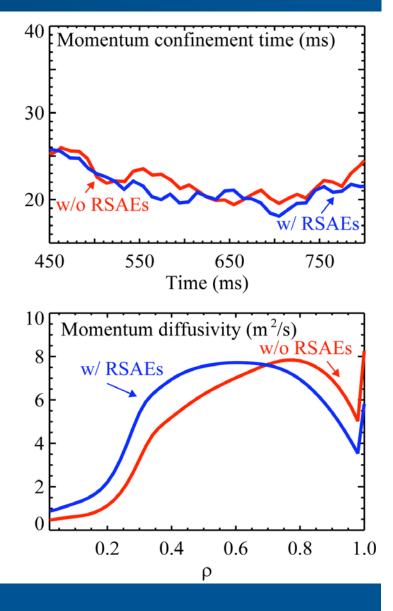
Recent Experiments Used ECH as a Means of Controlling RSAE Activity



MATIONAL FUSION FACILITY

See Van Zeeland poster JP8.00087

Rotation Profile Strongly Affected by RSAE Activity

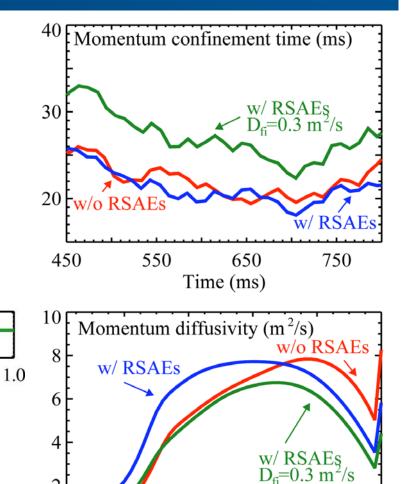

- Central rotation almost 2x greater with RSAE activity suppressed
 - Minor change in density does not explain difference
- However, total angular momentum content comparable
- Hypothesis: Change in rotation due to changes in torque profile
 - Redistribution of fast ions rather than complete loss?

Momentum Transport Quantities Dependent on Calculated Source Profile

- Assuming classical fast ion (FI) transport
 - Momentum confinement time τ_ϕ matches for two cases
 - But, local diffusivity χ_{ϕ} is notably larger for ρ <0.7 (wrong source profile)

 Torque profiles calculated using NUBEAM monte carlo package in TRANSP

Analysis of Momentum Transport Allows Anomalous Fast Ion Diffusion Driven by RSAEs to Be Estimated


(m²/s) (m²/s) (m²/s)

0.0

0.5

ρ

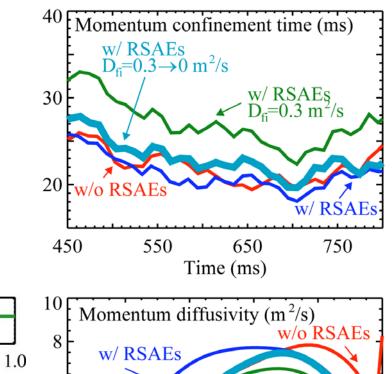
- Assuming classical fast ion (FI) transport
 - Momentum confinement time τ_{ϕ} matches for two cases
 - But, local diffusivity χ_{ϕ} is notably larger for ρ <0.7 (wrong source profile)
- If invoke anomalous fast ion diffusion D_{fi}=0.3 m²/s
 - Better match χ_{φ} for $\rho{<}0.6$
 - But global τ_{ϕ} increases (lost torque from the plasma)

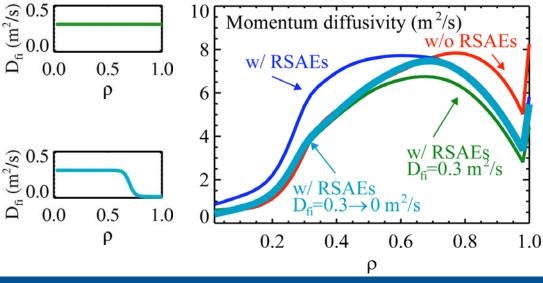
0.2

0.4

0.6

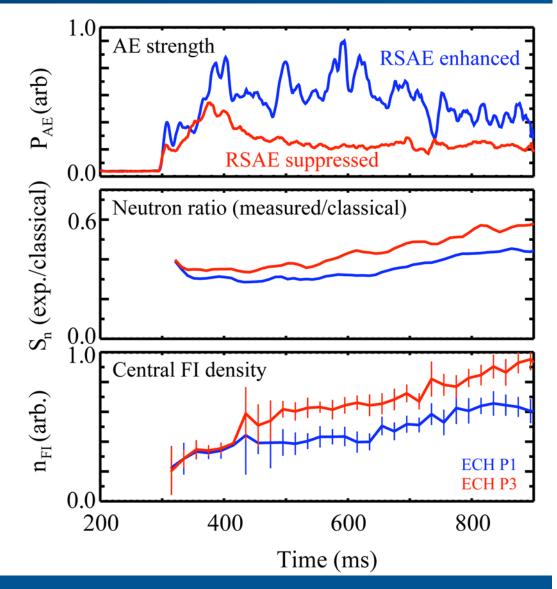
ρ


0.8

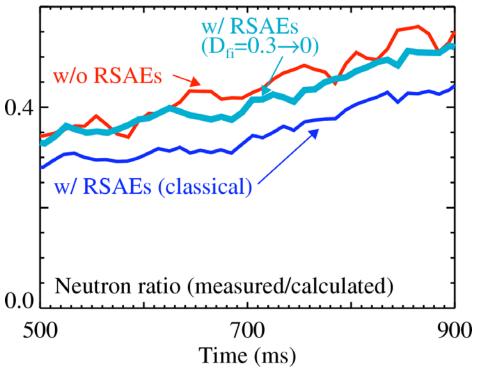

1.0

Analysis of Momentum Transport Allows Anomalous Fast Ion Diffusion Driven by RSAEs to Be Estimated

- Assuming classical fast ion (FI) transport
 - Momentum confinement time τ_ϕ matches for two cases
 - But, local diffusivity χ_{ϕ} is notably larger for ρ <0.7 (wrong source profile)
- If invoke anomalous fast ion diffusion D_{fi}=0.3 m²/s
 - Better match χ_{φ} for $\rho{<}0.6$
 - But global τ_{ϕ} increases (lost torque from the plasma)
- If use $D_{fi}=0.3 \rightarrow 0 \text{ m}^2/\text{s}$ profile
 - Match both τ_{φ} and χ_{φ} for $\rho{<}0.7$



Enhancement of Fast Ion Transport by RSAEs Also Supported by Neutron Rates and FI Density


- AE strength estimated from band-passed CO₂ interferometer measurement
- Large deficit in neutron rate compared with classical computation for both cases
 - Largest when RSAEs present
- Central fast ion density is larger when RSAEs are suppressed

Anomalous FI Diffusion Deduced from Momentum Transport Accounts for RSAE Neutron Deficit

- Neutron rate recalculated based on deduced anomalous fast ion diffusion profile
- Neutron deficit between plasma with/without RSAEs now more comparable
- However, still huge difference between calculated and measured neutron rate for both cases
 - RSAEs only account for relatively small part of neutron deficit
 - Other AEs (eg TAEs) affecting neutron rate much more

Summary

- RSAE activity has been shown to modify the rotation profile, while leaving the total angular momentum content unchanged
 - Suggests redistribution of fast ion profile delivering torque to plasma
- Study of momentum transport quantities (momentum diffusivity and momentum confinement time) allows estimate of fast ion redistribution caused by RSAEs
- Deduced fast ion redistribution consistent with additional deficit in neutron rate
- Large discrepancy still remains between measured and calculated neutron rates even when RSAE's suppressed
 - Potentially serious issue for study of rotation and momentum transport

