Local Turbulence Suppression and Flow Shear Dynamics During q-Triggered Internal Transport Barriers on DIII–D

by M.W. Shafer

with G.R. McKee*, D.J. Schlossberg*, M.E. Austin[#], K.H. Burrell⁰, R.E. Waltz⁰, J. Candy⁰

*University of Wisconsin, Madison, Wisconsin [#]University of Texas, Austin, Texas [◊]General Atomics, San Diego, California

Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics Orlando, Florida

November 12–16, 2007

Overview

- <u>Motivation</u>: Understand the effects of low-order rational q surfaces on turbulence and flow shear at low magnetic shear.
 - Integer q's in Negative Central Shear (NCS) can trigger ITBs (Austin, et. al.).
 - Why? ...Zonal Flows (Waltz, et. al.), ...Convective Cells (Diamond & McDevitt)
- <u>Work</u>: Examine turbulence and turbulence flow via Beam Emission Spectroscopy (BES).
 - Data at both high and low toroidal rotation, v_{ϕ} .
- <u>Results</u>: Turbulence tied to rational surfaces in Negative Central Shear (NCS).
 - Local turbulence reduction observed at time q_{min} crosses low-order rational.
 - Local turbulence poloidal velocity, v_{θ} , shear develops after q_{min} =2.
 - Outward radial propagation, roughly following q=2 surface.

Integer q's Linked to ITB Formation in NCS Discharges on DIII-D

- ITB forms with sufficient background ExB shear when q_{min}=2.*
 - Sudden changes in confinement at low-order rational q_{min} surfaces.
 - Background ExB shear controlled via Neutral Beam Injection (NBI).

*See Poster UP8.00059, M. Austin, Thursday Afternoon

Sheared Flows Predicted Near Low-Order Rational q Minima

• GYRO simulations suggest zonal flows (m=0, n=0)

- Explained by a resonance of turbulence modes at low-order rational surface.
- Enhanced turbulence at lowest-order surface.
- Radial divergence drives zonal flows.

R.E. Waltz, et. al., Phys. Plasmas, 13 052301 (2006).

• Secondary Convective Cells theorized

- Energy transfer from drift waves to low-m,n convective cell, resonant at q=m/n.
- Can drive radial transport.
- Damped by magnetic shear.

C.J. McDevitt, et. al., Phys. Plasmas **13** 032302 (2006). P. Diamond, et. al. IAEA 2006.

2D BES Array Measures Local Turbulence and Poloidal Flow

- 5x6 BES array scanned radially shot-to-shot
- Turbulence advection measured via Cross Correlation Time Lag ⇒

 $v_{\theta,turbulence} = v_{ExB} + v_D$

- Typically, $v_D \ll v_{ExB}$

- Compares well to CER-measured E_r .

Localized Turbulence Reduction w/ Low-Order Rational q Minima

- ITB triggered by q_{min}=2 inside r/a~0.4 at high rotation
- Turbulence reduction when loworder rational q minima appear.
 - Measurements outside q_{min} .
 - Fluctuation spectra dominated by RSAE's inside q_{min}.
- Largest turbulence reduction observed nearest q_{min}, ~30 %
- Radial outward propagation.
 - Front velocity ~ 0.4 m/s
- Increased transient turbulence levels following suppression.
 - Possible mode resonance?

Localized Turbulence Reduction w/ Low-Order Rational q Minima

- ITB triggered by q_{min}=2 inside r/a~0.4 at high rotation
- Turbulence reduction when loworder rational q minima appear.
 - Measurements outside q_{min} .
 - Fluctuation spectra dominated by RSAE's inside q_{min} .
- Largest turbulence reduction observed nearest q_{min}, ~30 %
- Radial outward propagation.
 - Front velocity ~ 0.4 m/s
- Increased transient turbulence levels following suppression.
 - Possible mode resonance?

Turbulence Suppression Also Observed in Balanced Injection

- No ITB formed w/o sufficient equilibrium E_r.
 - q_{min} at r/a ~ 0.30-0.4
- Suppression observed when loworder rational q minima appear.

- Measurements outside of q_{min}=2.

 Again, largest reduction found observed closest to q_{min} surface.

- < 30%

- Outward radial propagation of suppression.
 - Front $\sim 1 \text{ m/s}$
 - Comparable to q=2 surface

Localized v_{θ} Shear Measured Near q_{min} =2 Surface

- Transient v_{θ} excursion \Rightarrow flow shear develops following $q_{min}=2$.
 - at highest, dv_{θ}/dr exceeds 500 kHz at high rotation, 150 kHz at low rotation.
- Shear rate transiently exceeds measured turbulence decorrelation rate,

 $dv_{\theta}/dr < \tau_{c}^{-1}$.

- τ_{c}^{-1} ~ 70 kHz at high rotation, τ_{c}^{-1} ~ 100 kHz at low rotation.
- Low frequency Zonal-Flow-like structure.

Morgan Shafer - APS-DPP - Orlando, FL 2007

Localized v_{θ} Excursion Propagates Radially Outward

- Propagation independent of toroidal rotation, ~1m/s.
- Weakens with increasing radius, i.e. magnetic shear.

Velocity Excursion Follows q=2 Surface

- ∇T_e corrugations follow q=2 surface.
- v_{θ} excursion tracks/follows ∇T_{e} corrugation.

Morgan Shafer - APS-DPP - Orlando, FL 2007

Velocity Excursion Follows q=2 Surface

- ∇T_e corrugations follow q=2 surface.
- v_{θ} excursion tracks/follows ∇T_{e} corrugation.

Velocity Excursion Follows q=2 Surface

- ∇T_e corrugations follow q=2 surface.
- v_{θ} excursion tracks/follows ∇T_{e} corrugation.

Summary and Conclusions

- Spatio-temporal turbulence dynamics examined during NCS q_{min} events via localized BES fluctuation measurements.
- Transient turbulence suppression correlates with low-order rational q minima.
- Low frequency zonal-flow-like velocity shear develops immediately after q_{min} reaches 2.
 - Weakens with increasing magnetic shear
- Outward radial propagation observed, approximately tracking q=2 surface.
- Supports theories of shear flow tied to integer surfaces at low magnetic shear, i.e. zonal flows or convective cells.

Turbulence Suppression Propagates Radially Outward

Te Gradient Corrugation Propagates with Integer Surface

M.E. Austin, et al., Phys. Plasmas 13, 082502 (2006).

• GYRO simulations suggest zonal flows (m=0, n=0)

- Resonance of turbulence modes at surface.
- Enhanced turbulence in at lowest-order surface.
- Radial gradient drives zonal flows
- R.E. Waltz, et. al. Phys. Plasmas, 13 052301 (2006).*

• Secondary Convective Cells theorized

- Energy transfer from drift waves to low-m,n convective cell, resonant at q=m/n.
- Damped by magnetic shear.
- Can drive radial transport.
- C.J. McDevitt, et. al., Phys. Plasmas **13** 032302 (2006).
- P. Diamond, et. al. IAEA 2006.

