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The Hybrid Scenario is an High Performance
Inductive Operating Regime for ITER

Conventional H-mode:
βN ≈ 1.8, 
q95 ~ 3, fBS << 1
baseline

Advanced inductive:
βN ≤ βno-wall, 
q95 ~ 3, fBS ~ 0.3
high gain

Hybrid:
βN ≈ βno-wall, 
q95 ≥ 4, fBS ~ 0.5
high fluence

Advanced tokamak:
βN ≤ βideal-wall, 
q95 ≥ 5, fBS ~ 0.8
steady-state
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•  The major tokamak programs have been
 developing the hybrid scenario for a
 number of years.

•  It provides high gain and high neutron
 fluence options for ITER operation.

•  This talk will cover two areas where we’ve
 made significant advances, leading to
 better capability to forecast performance:

 –  MHD & the current profile,

 –  rotation & confinement,

 –  and will give a brief sampling of other
  areas of tokamak physics being
  addressed in hybrids.
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Stationary, High Performance Hybrids
are Studied in DIII-D

•  Stationary conditions are maintained for many τE and τR.
➜ limited only by hardware.
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MHD and the current profile
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MHD Activity is an Integral Part of Hybrid Operation
– Usually a m/n = 3/2 NTM in DIII-D

•  The effect of the ~stationary NTM

 –  is to broaden the current profile
     ➜ raises q(0)
     sawteeth are reduced (for q95 ≤ 4)
     or eliminated (for q95 > 4)
  › better confinement
  › removes one trigger for the 2/1 NTM

–  increases stability of 2/1 mode

 –  with only a modest confinement reduction
  est ΔτE/τE ≈ – 6-15%
  depending on q95, rotation

 –  leading to high β operation;
βN ~ 4li (~ no-wall limit)
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➤ Without a 3/2 mode, the
 discharge evolves to an
 unstable 2/1 tearing mode

➜ controlled shut-down
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The Current Near the Axis is Reduced, Increasing q(0)
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•  Measured current profile shows
 deficit at center compared to
 sum of calculated currents.

•  Only ~5% of total current, but
 strongly affects q(0).

•  TRANSP simulation switches to
 neoclassical resistivity and
 current transport at 3.5 s.

–  current profile peaks and
 q(0) drops.
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The NTM is Responsible for Modifying the q Profile:
Changing the NTM Amplitude with ECCD Affects Sawteeth

• co-ECCD at q=1.5
• suppresses 3/2 NTM
• sawteeth appear

• counter-ECCD at q=1.5
• enhances mode
• sawteeth suppressed

n=2
3/2 NTM

n=1
sawteeth

•  Decreasing NTM amplitude increases sawtooth size, indicating peaking
of the central current and reduction of q(0), and vice versa.
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•  Raises the question: how does the NTM act on the current profile?
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Several Mechanisms Suggested to Explain the Effect
of the 3/2 Mode on q & J

•  Making progress, but no definitive conclusion yet.

–  Direct current drive by the 3/2 mode
 – as seen from the magnetic axis, 
    the NTM island looks like an Alfvén wave antenna

•  interesting physics; calculated magnitude too small

–  Broadening of the fast ion spatial profile by the 3/2 mode
•  change in fast ion profile is observed;

     modeling indicates small effect on current profile

–  Modulation of the NTM amplitude by ELMs
 – asymmetry in time ⇒ flux pumping
  (analogous to the effect of sawteeth on q & J)

•  evidence for effect is seen

–  Dynamo
 – conversion of kinetic to magnetic energy via 〈v×B〉

•  no data; need nonlinear resistive MHD modeling

~~

➜

➜
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The Central Fast Ion Density is Reduced by the 3/2 NTM
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•  Preliminary TRANSP analysis using uniform
    fast ion diffusion shows a large drop in
    central NBCD.

•  TRANSP indicates that most of this is
    replaced by increased ohmic current,
    yielding a very small change in q(0). 

•  The FIDA (fast ion Dα) diagnostic
    indicates that the density of fast ions
    drops in the inner region of the
    plasma when the 3/2 NTM appears.
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Modulation of the 3/2 NTM by ELMs Leads to 
Current Profile Broadening
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•  Averaging over many ELMs, 
analysis of MSE data shows that,
at an ELM, q increases inside the 
q=3/2 surface.
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•  This modulation can lead to a 
poloidal magnetic flux pumping 
effect
(similar to the process whereby 
sawteeth maintain q0 ~ 1). 

[Petty, JP8.00084]



APS/DPP Orlando – 15Nov07 – Politzer – 11

Rotation and confinement
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Hybrid Performance Depends on Toroidal Rotation 

•  Most of the tokamak experience base has been limited to plasmas with
     strong toroidal rotation (thanks to NB heating).

•  There is concern that ITER (& DEMO & reactors) will have low rotation.

➜ To study this issue, we’ve used the recently modified NB configuration in
     DIII-D to study the effect of rotation on the performance of hybrid plasmas.
     (5 sources co-NBI; 2 sources counter-NBI.)

–  We did systematic scans of rotation for both hybrid (q95 ~ 4.2 & 4.6) and
    advanced inductive (q95 ~ 3.2) plasmas.

–  The central Mach number has been reduced by up to a factor of 5,
    to M(0) ≈ 0.1, maintaining stationary conditions.

➜ Both the confinement and the MHD properties are affected.
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Reducing Rotation Strongly Affects Plasma Characteristics
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• High vs. low rotation:
 – add counter-NBI
 – reduce torque;
  rotation decreases
 – confinement decreases;
  total power increases
 – 3/2 NTM amplitude increases

• Experiments and modeling
 are sorting out what’s
 happening.

0.20

0.00

0.10
τE (s)

M(0.5)



APS/DPP Orlando – 15Nov07 – Politzer – 14

Density, Temperature, and Current Profiles
are Unaffected by Changing Torque
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Also, JNBCD is halved
(0.12→0.06 MA), but
the effect on q and Jtotal
profiles is negligible.
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Angular Momentum is Roughly Proportional To Torque

•  Vary the applied torque (T)
 over the range 0.4-4.6 N-m.

•  Characterize rotation by either
 L = total angular momentum
 M(0.5) = Mach number at ρ = 0.5

› these are strongly correlated

•  L ∝ T
⇒ τΩ = L/T ~ independent of L,

 except for a possible indication of
 ‘inherent’ rotation at low torque.

•  Very low (and zero) rotation was
 inaccessible because of error
 field penetration and locking
 of the 3/2 NTM.
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Global Confinement Improves As Toroidal Rotation Increases
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•  Weak dependence of τE and τΩ on M(0.5)
 at q95 > 4; stronger for low q95.

•  Medium & high q95 indistinguishable.

• τE and τΩ close to numerically equal, 
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ExB Flow Shearing Rate Increases With Rotation

M(0.5) incr.
M(0.5)
incr.

high q95

0.0 0.2 0.4 0.6 0.8 1.0
ρ

200

150

100

50

0

x103 s–1 q=1.5
100

80

60

40

20

0
0.0 0.2 0.4 0.6 0.8 1.0

x103 s–1

ρ

low q95
M(0.5)
0.12
0.14
0.20
0.25

M(0.5)
0.13
0.16
0.24
0.36

q=1.5

• ExB flow shear at high q95 is is ~2x value at low q95.
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Turbulent Transport Coefficients Decrease As Rotation
and Rotation Shear Increase (Tglf Modeling)

•  At high q95: χe & χi are comparable, and well above χi,neo.

•  At low q95: χi is comparable to χi,neo, but χe is much larger.

➜ Using χi+χe as a measure of overall turbulent transport, going
 from high to low rotation the turbulent transport increases by
 ~25% at low q95 and by ~40% at high q95.
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Turbulent Transport Coefficients From TGLF Reproduce
Trends Seen In Transp Analysis of Profiles
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Change In 3/2 Island Width Is Calculated To Have
A Moderate Effect On Confinement

–  Island width is larger at low q95
 at all rotations.

–  Change in width with rotation is
 larger at low q95.

–  Largest island is 9.5 cm wide,
 ~16% of minor radius.

•  Assess effect on τE using
 Chang-Callen ‘belt model’:
 –  At high rotation, island reduces τE
     to 90-96% of est’d unperturbed value.
 –  For higher q95, increasing width has a
     small effect.
 –  For low q95, τE is reduced to ~85% of
     unperturbed value.
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Other tokamak physics with hybrids
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Many Other Physics Studies And Results Using Hybrids

– The role of Te/Ti; changes in turbulence levels & confinement
of energy and momentum. [Doyle, GO3.00006]

– The effect of shaping on confinement (triangularity, squareness,
upper/lower null, double null). [Groebner, GO3.00012, Leonard 
BI1.00003]

– The effect of triangularity and squareness on the pedestal.
[Leonard, BI1.00003, Groebner GO3.00012]

– The effect of rotation on the pedestal pressure. [Leonard, BI1.00003]

– Demonstration of radiative divertor operation
and divertor heat flux reduction. [Petrie, UP8.00035].

– ELM suppression with RMP. [Fenstermacher, BI1.00002]

– The effect of wall conditioning on hybrid performance. [West, 
GO3.00005]
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Increasing Te/Ti Leads to Increased Fluctuations
and Reduced Confinement

• Increase Te/Ti by adding 2.3 MW
 of ECH.

• Te/Ti at center increases by 22% 
 (0.67-0.82).

• Rotation is reduced.

• Low-k & medium-k density
 fluctuations increase.

• To separate Te/Ti and rotation
 effects, compare with NBI-only
 plasma, matched for the same
 rotation and β;
 – by adding ~0.6 MW of
    counter-NBI instead of ECH.

• H89 is ~15% lower with ECH.
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Confinement, Pedestal, And ELMs All Depend On Shape

•   With increased triangularity:
–  confinement improves

  at fixed βN
–  pedestal β increases
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•  With increased squareness:
–  pedestal β decreases
–  smaller, faster ELMs

 (consistent with theory)
–  reduce triggering of

 2/1 NTM
119748
119750



APS/DPP Orlando – 15Nov07 – Politzer – 25

Conclusions

•  The presence of a stationary NTM is an inherent feature of ITER hybrid
    scenario plasmas in DIII-D
 – the NTM contributes to the beneficial modification of the current profile
 – the confinement penalty due to the NTM is modest

   (5-15% lower than no-NTM estimate)

•  Rotation and rotation shear have strong effects on confinement:

 –  Scanned the central Mach number 0.1-0.5

 –  At low rotation, the fusion performance parameter
  G (= βNH89/q952) is reduced by 10-30%, but remains
  above the ITER level for Q fus = 10 operation at low q95.

 – 3/2 NTM island width increases as rotation is reduced,
  with a moderate effect on confinement.

 – Primary confinement effect of changing rotation is via changes
  in ExB flow shear and turbulent transport.

•  In addition to being a demonstrated scenario for improved ITER operation,
 the hybrid scenario is a good place for studying tokamak physics.




