### Integrated Scenario Modeling for Advanced Tokamak Scenario Development in DIII-D

By J.M. Park

In Collaboration with M. Murakami<sup>#</sup>, H.E. St John, L.L. Lao, J.R. Ferron, and R. Prater

\*Oak Ridge National Laboratory, Oak Ridge, Tennessee

Presented at Forty-Ninth Annual Meeting American Physical Society Division of Plasma Physics Orlando, FL

Nov 12 –16, 2007



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



### Recent Focus of DIII-D Advanced Tokamak (AT) Research is Optimization for Fully Noninductive High $\beta$ Operation

- Experiments with weakly negative central magnetic shear achieve performance necessary for ITER Q=5 steady-state scenario:  $\beta_N \leq 3.5$ ,  $G \leq 0.3$  and  $f_{NI} \approx 100$  %
- Nearly fully noninductive, stationary discharge was obtained with extended duration, limited Only by Hardware: β<sub>N</sub> ≈ 3.5, G ≈ 0.3 with τ > τ<sub>R</sub>
- Shape optimization allows access to higher performance, extending stationary operational space to  $\beta_N \leq 4$  and  $G \leq 0.4$
- Integrated modeling has been carried out to guide AT experiments with upgraded DIII-D hardware
  - Validated against DIII-D AT discharges
  - Extrapolate to 100 % fully noninductive operation with  $\beta \approx 4$  and  $G \approx 0.4$  using higher power ECCD and FW



APS07/JMP/V0.9

## Nearly Fully Noninductive, Stationary Discharge Obtained with Extended Duration, Limited Only by Hardware



- $\beta_{N} = 3.4, G=0.3, H_{89} = 2.4$  $\tau_{dur} \approx 1.3 \tau_{R}$
- Very stationary but not fully noninductive
- Limited by NBI, not by EC

## Both Measurement and Simulation Indicate Stationary Current Profile with $f_{NI} > 90\%$



Measurement (Loop voltage analysis):

• Simulation (Current profile evolution):

$$- f_{ind} = 8 \%, f_{NI} = 92 \%$$

- 
$$f_{BS} = 60$$
 %,  $f_{NB} = 28$  %,  $f_{EC} = 5$  %



APS07/JMP/V0.9

## Theory-Based GLF23 Model with Self-consistent Source & Sink Calculation Validated Against DIII-D AT Discharges





### Feedback Control Included in Integrated Modeling for Predictive Simulations of DIII-D AT Discharges



- β Feedback control in ONETWO/GLF23 transport simulation
- NB Power is modulated In the same way as DIII-D experiment to keep  $\beta_N$  constant
- Various model feedback control methods implemented into ONETWO/GLF23

# ONETWO/GLF23 Predicts FW H&CD Allows Operation at Higher $f_{NI}$ at Given $\beta_{N}$



- FW heating is more efficient in region where  $\chi_e$  and  $\chi_i$  are lowest
- FW Heating increases  $\beta_{\rm e^{\prime}}$  resulting in higher  ${\rm f}_{\rm bs}$  and improved off-Axis ECCD efficiency



APS07/JMP/V0.9

# 4.5-MW EC and 2.5-MW FW Can Achieve $f_{NI} = 100 \%$ at $\beta_N = 3.5$ for $\tau_{dur} \ge 2 \tau_R$



- $P_{NB}$  = Feedback controlled to maintain  $\beta_N$  = 3.5
- $f_{bs}$  increases with  $P_{FW}$  at given  $\beta_N$ 
  - FW power results in higher  $f_{NI}$  with reduced average NB power
- $P_{EC} = 4.5$  MW and  $P_{FW} = 2.5$  MW leads to 100 % noninductive operation with  $P_{NB} \approx 4.5$  MW



#### **Shape Optimization Allows Access to Higher Performance**



- Double-null divertor experiments have achieved:
  - $\beta_{\rm N} \approx 4, \ G \approx 0.4$
- Current profile analysis indicates additional off-axis current drive required to reach fully noninductive conditions
  - feasibility study of off-axis NB [JP8 Murakami]



## ONETWO/GLF23 Predicts Density Pumping Leads to Fully Noninductive Operation at $\beta_N = 4.0$



#### Conclusion

- Integrated scenario modeling based on ONETWO/GLF23 has been successfully validated against recent DIII-D AT experiments with new modeling capabilities
- Integrated modeling predicts continued progress in future DIII-D AT experiments with improved heating and current drive capabilities:
  - Combined 4.5 MW EC and 2.5 MW FW will allow  $f_{\rm NI}$  = 100 % at  $\beta_{\rm N}$  = 3.5 for  $\tau$  >  $2\tau_{\rm R}$
  - Double-null operation with density pumping will achieve  $f_{NI} = 100 \%$  at  $\beta_N = 4.0$

