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Recent Focus of DIlI-D Advanced Tokamak (AT) Research is

Optimization for Fully Noninductive High g Operation

= Experiments with weakly negative central magnetic shear
achieve performance necessary for ITER Q=5 steady-state
scenario: g, = 3.5, G =0.3 and f;, = 100 %

< Nearly fully noninductive, stationary discharge was
obtained with extended duration, limited Only by
Hardware: g, = 3.5, G = 0.3 with 7> T,

< Shape optimization allows access to higher performance,
extending stationary operational space to g, <4 and G =

0.4

e Integrated modeling has been carried out to guide AT
experiments with upgraded DIII-D hardware

— Validated against DIII-D AT discharges
— Extrapolate to 100 % fully noninductive operation

with g= 4 and G = 0.4 using higher power ECCD and FW
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Nearly Fully Noninductive, Stationary Discharge Obtained

with Extended Duration, Limited Only by Hardware
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Both Measurement and Simulation Indicate Stationary

Current Profile with fy, > 90%

13002
~ 100 30023 _
< o
< <
® =
< L
= <
2 =
k% =
(= 7))
a 3
= o) ]
c - |
()] C L
= g .
> L. L — I
] = | |
0.0 0.2 0.4 06 0.8 0 O 200 . ,
Radius(p) 0.0 0.2 0.4 0.6 0.8 1.0

Radius(p
 Measurement (Loop voltage analysis):
— f 4~ 10%, f, ~ 90 %
« Simulation (Current profile evolution):
- f.,=8%,f,=92%
— =60 %, fz =28 %, f.o =5 %
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Theory-Based GLF23 Model with Self-consistent Source &

Sink Calculation Validated Against DIlI-D AT Discharges
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= Solve all transport (n, T, T;, Q,, J) equations
< ELM average profiles as boundary condition at p = 0.9
- Simulation tends to overestimate Q in the core 2 y,, = 5y 2N
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Feedback Control Included in Integrated Modeling for

Predictive Simulations of DIlI-D AT Discharges
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B Feedback control
In ONETWO/GLF23 transport
simulation

NB Power is modulated In
the same way as DIII-D
experiment to keep B,
constant

Various model feedback
control methods
Implemented into
ONETWO/GLF23
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ONETWO/GLF23 Predicts FW H&CD Allows Operation at

Higher f, at Given B,
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= FW heating is more efficient in region where x, and yx; are lowest

= FW Heating increases B, resulting in higher f,_. and improved off-
Axis ECCD efficiency
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4.5-MW EC and 2.5-MW FW Can Achieve f, = 100 %

at By =3.5forty, 22 T,
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- P\ = Feedback controlled to maintain B, = 3.5
- f..increases with P, at given B
— FW power results in higher fy, with reduced average NB power

e P, =4.5MW and P, = 2.5 MW leads to 100 % noninductive
operation with P gz = 4.5 MW
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Shape Optimization Allows Access to Higher Performance
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e Double-null divertor experiments have achieved:
- ﬁN ~ 4, G ~ 04

= Current profile analysis indicates additional off-axis current drive
required to reach fully noninductive condtions

— feasibility study of off-axis NB [JP8 Murakami]
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ONETWO/GLF23 Predicts Density Pumping Leads to Fully

Noninductive Operation at g, = 4.0
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e P, =4.5MW and P, = 2.5 MW leads to 100 % noninductive
operation at <n> = 4.0 x1013/cm3
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Conclusion

e Integrated scenario modeling based on ONETWO/GLF23 has
been successfully validated against recent DIII-D AT
experiments with new modeling capabilities

e |ntegrated modeling predicts continued progress in future
DIII-D AT experiments with improved heating and current drive
capabillities:

— Combined 4.5 MW EC and 2.5 MW FW will allow
fy =100 % at B, = 3.5 for t > 21,

— Double-null operation with density pumping will achieve
fy =100 % at B, =4.0
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