Excitation of Alfvén Waves By Low Velocity Supra Thermal lons in the DIII-D and JET Tokamaks

By R. Nazikian

in collaboration with

M. Austin^{*}, H.L. Berk^{*}, D. Borba^j, R.V. Budny[†], G.Y. Fu[†], N.N. Gorelenkov[†], W.W. Heidbrink[#], G.J. Kramer[†], M. Makowski, G.R. McKee^Δ, S.D. Pinches[‡], S.E. Sharapov[‡], E.J. Strait[%], W.M. Solomon[†], M.A. Van Zeeland[%], R.B. White[†] JET EFDA and DIII-D contributors

*University of Texas, Austin

¹ Euratom/IST Fusion Association, Centro de Fusao Nuclear, Lisboa, Portugal [‡]Euratom/UKAEA Fusion Association, Culham, Abingdon, United Kingdom [†]Princeton Plasma Physics Laboratory, Princeton, New Jersey [%]General Atomics, San Diego, California

[#]University of California, Irvine

 ${}^{\Delta}$ University of Wisconsin, Madison

Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics Orlando, Florida November 12–16, 2007

Recent Surprise : Rich Spectrum of Alfvén Waves Excited by Low Velocity Supra Thermal Ions in Fusion Plasmas

- Excitation of Alfvén waves previously explored for V_{II}~V_A
 Requires high ion energies (> 1 MeV) or low V_A (low B)
- However, many Alfvén waves now seen for $V_{||}$ well below V_A
- Rapid progress made in mode identification
 - the challenge is to understand the excitation mechanism

Fundamental Resonance Condition Cannot Explain Many Alfvén Waves Driven by Low Energy Ions

- Shear Alfven wave
- $\omega \approx \mathbf{k}_{\parallel} \mathbf{V}_{\mathsf{A}}$
- common varieties
- **RSAE** : single m
- TAE : couples m, m+1
- EAE : couples m, m+2

• Fundamental resonance condition:

 $\omega_{\text{MHD}} \approx (\mathbf{k}_{\parallel} \pm 1/qR) V_{\parallel}$; $V_{\parallel}=0.23 V_{\text{A}}$ in DIII-D and 0.16 V_{A} in JET

RSAE :
$$V_{||}$$
≈ 1/5 V_A or -1/3 V_A
TAE : $V_{||}$ = ± 1/3 V_A or ± V_A
EAE : $V_{||}$ = ± 1/2 V_A

Excitation can be Explained by Invoking Higher Order Resonances, relevant for Advanced Tokamak Regimes

- Advanced tokamak regimes have high central q
 - High k_⊥ (≈ q n / r)
 - High $\Delta_{\rm b}$ (≈ q $\rho_{\rm b}$)

Higher order resonances: $\omega_{MHD} \approx (k_{||} \pm p/qR) V_{||}$ p= 2,3,4...

Resonant velocity strongly decreases for large p

 $-V_{\parallel} \propto V_{A}/p$

 Importance: In high-q, steady state regimes, multiple high order resonances can greatly enhance instability drive and affect fast ion transport

Outline

- Observation of Alfvén wave excitation below the fundamental resonance condition in DIII-D and JET
- Ideal MHD analysis of radial mode structure, location
- Stability analysis and coupling to high order resonances

• Implications

JET and DIII-D Have Comparable Diagnostics and Complementary Parameters for Alfvén Wave Studies

Experimental Scenario on DIII-D for Alfvén Eigenmode Study in Reverse Magnetic Shear Plasmas

• Early beam heating is used to delay current penetration and create reverse magnetic shear

DIII-D Measurements in Reverse Magnetic Shear Plasmas Indicate Many Unstable Alfven Eigenmodes

• Difficult to go below $V_{\parallel} = 0.25$ V in DIII-D

Experimental Scenario on JET Alfvén Eigenmode Study in Reverse Magnetic Shear plasmas

• Lower Hybrid Current drive is used to obtain reversed shear (P_{LHCD}=2MW)

JET in Reverse Magnetic Shear Plasmas Indicate Many : Unstable Alfvén waves even for $V_{\parallel} \approx 0.16 V_A$

RSAEs have been observed in JET down to V_{II} ≈ 0.11 V_A in JET

Modes Observed Below the Fundamental Resonance Condition in DIII-D and JET

	Fundamental	JET	DIII-D
	resonance	V ≈0.16 V _A	V ≈0.23 V _A
RSAE	V _{RES} ≥0.2 V _A		
TAE	V _{RES} ≥0.33 V _A	\checkmark	√ √
EAE	V _{RES} ≥0.5 V _A		√ √

- ✓ =mode observed
- ✓ ✓ =mode observed below fundamental resonance

Modes Observed Below the Fundamental Resonance Condition in DIII-D and JET

	Fundamental resonance	JET V _{II} ≈ 0.16 V _A	DIII-D V _{II} ≈0.23 V _A
RSAE	V _{RES} ≥0.2 V _A	√	
TAE	V _{RES} ≥0.33 V _A		√ √
EAE	V _{RES} ≥0.5 V _A		

• TAE in JET and EAE in DIII-D are well matched: $V_{\parallel}/V_{RES} \approx 0.5$

Outline

- Observation of Alfvén wave excitation below the fundamental resonance condition in DIII-D and JET
- Ideal MHD analysis of radial mode structure, location
- Stability analysis and coupling to high order resonances
- Implications

Eigenmode Analysis Confirms Localization of EAEs to the Reverse Magnetic Shear Region of DIII-D

- Mode frequencies agree with experiment
- Core localization agrees with EC emission measurements

Eigenmode Analysis Confirms Localization of TAEs to the Reverse Magnetic Shear Region of JET

- Calculations agree with magnetic measurements for mode frequency and toroidal mode number (n=3, 4, 5)
- Core localization confirmed from central interferometer measurements

Short Poloidal Wavelength and Large Beam Ion Drift Orbits in JET and DIII-D Reverse Shear Plasmas

• $k_{\theta}\rho \approx 1$ in JET and ≈ 2 in DIII-D, expect high order resonances

Outline

- Observation of Alfvén wave excitation below the fundamental resonance condition in DIII-D and JET
- Ideal MHD analysis of radial mode structure, location
- Stability analysis and growth rate from high order resonances
- Implications

NOVA-K Analysis Reveals Many High Order Resonances Contribute to Mode Drive for EAEs in DIII-D

- $V_{\parallel} \propto \omega/p$ at high p
- p=const.→
 V_{II}≈const.
- 75 keV ions injected into region of strong high order resonances

 Scattering of co-injected 75 keV ions into counter going orbits calculated using the TRANSP code

NOVA-K Analysis Reveals Dominant High Order Resonances Contribute to Mode Drive for TAEs in JET

 Scattering of co-injected 115 keV ions into counter going orbits calculated using the TRANSP code

Contribution to Mode Drive from co-going Beam lons Comes Mostly From p=6-10 in DIII-D and p=4-5 in JET

• Forcing $k_{\theta}\rho <<1$ in DIII-D shifts the spectrum down to the lowest accessible resonance; dramatically weakens drive

Simple Estimate of High Order Resonance Condition Consistent with NOVA-K Stability Analysis

	High order resonance	JET V _{II} ≈ 0.16 V _A	DIII-D V _{II} ≈0.23 V _A
RSAE	V _{RES} ≥V _A /4p	p≥2	p≥1
TAE	V _{RES} ≥V _A /2p	p≥3	p≥2
EAE	V _{RES} ≥V _A /p	p≥6	p≥4

- No clear velocity threshold for mode excitation, consistent with experiment
- EAE not seen in JET plasma, consistent with higher threshold

High Order Resonance Excitation of Alfvén Waves Confirmed in High-q Regimes on JET and DIII-D

- Large drift orbits and high k_{θ} at high-q are key to excitation
- Implications
 - No sharp velocity threshold
 - Resonance can extend over a large region of phase space
 - Fast ion transport induced by these multiple resonances needs to be assessed
- In ITER, growth rate peaks For $k_{\theta}\rho_{\alpha} \approx 1$ (n=8-20)
 - High order resonances will contribute to mode drive in steady state regimes
- Future work: Identify losses associated with these resonances