Plasma Initiation and Startup in DIII-D Simulating The ITER Scenario

by
G.L. Jackson

for
T.A. Casper†, T.C. Luce, J.R. Ferron, A.W. Hyatt,
E.A. Lazarus*, R.A. Moyer†, M. Murakami*,
T.W. Petrie, D.L. Rudakov‡, W.P. West

†Lawrence Livermore National Laboratory, Livermore, California
*Oak Ridge National Laboratory, Oak Ridge, Tennessee
‡University of California-San Diego, La Jolla, California

Presented at
Forty-Ninth APS Meeting of the Division of Plasma Physics
Orlando, Florida

November 12-16, 2007
Plasma Startup in ITER Must Address Several Issues

- Plasma rampup while limiting on outer wall bumper limiters
- Operation near n=0 vertical stability limit (places constraints on maximum ℓ_j)
- Initiation at relatively low toroidal electric field (~0.3 V/m)
- $q_{\text{min}} > 1$ for advanced inductive and advanced tokamak scenarios

DIII-D HAS STARTED EXPERIMENTS AND MODEL VALIDATION SIMULATING THE ITER STARTUP
DIII-D Has Simulated the ITER Baseline Startup Scenario

- **l_i (1.6)**
 - ITER design limit

- **q95 (12.8)**
 - Constant q95 Baseline Scenario

- **T_e0 (1.8)**
 - Gapout (cm)

- **V_p (15)**
 - Diverted

- **I_p (1.0)**
 - Disruption n/ncrit = -0.91

- **Time (ms)**
 - t=100ms
 - t=800ms

G. Jackson, APS07
DIII-D has simulated the ITER Baseline Startup Scenario and helped develop an improved ITER Startup.
ℓ_i Feedback Enables Operation Below the Vertical Stability Limit

- Usefulness for optimizing current profile in ITER
- dI_p/dt is used as the actuator
- Real time EFT calculates ℓ_i, PCS compares to target ℓ_i and produces error signal
- Baseline discharges are near $n=0$ stability limit and sometimes exhibit a VDE
Plasma Formation in DIII-D is Near the Inner Wall, But Rapidly Limits on the Outer Wall (< 1s on ITER Time Scale)

- I_p always initiates near the inner wall (V_{loop}/R is maximum)
- ITER startup is "planned" to be further outboard

Graphs:
- Graph 1: $R(m)$ vs. $t_{DIII-D}(s)$
 - Single filament fit
 - EFIT(jtvs)
- Graph 2: $I_p(A)$ vs. $t_{DIII-D}(s)$

Diagram:
- Large bore startup scenario
- RECH resonance (2nd Harmonic)

Text:
- DIII-D scaled to ITER using resistive current time (1:50)
Reduced VLOOP Startup Was Achieved in the ITER Scenario

Initial experiments achieved startup on the outer wall at reduced voltage.
Reduced V_{LOOP} Startup was Achieved in the ITER Scenario
ECH Allows Initiation at A Higher Neutral Pressure

- Initial experiments achieved startup on the outer wall at reduced voltage.
- Higher prefill with ECH may provide more flexibility in startup.

Graphs

- **Reduced V_{LOOP} vs. Time (ms)**
 - Normal DIII-D
 - ITER design value (0.3 V/m)

- **Heat Power (P_{Heat}) vs. Time (ms)**
 - P_{ECH}
 - P_{Ohmic}

- **Current (I_p) vs. Time (ms)**
 - Normal DIII-D

- **Pressure (P_{D_2}) vs. Time (ms)**
 - Normal DIII-D

G. Jackson, APS07
Modeling Predicts Vertical Stability (n=0) And Coil Currents are Near Limits During the Ip Ramp

- CORSICA simulation models ITER baseline scenario
 - Scenario 2 “small bore baseline startup
 - Maximum \(i(3) = 1.15 \)
- Good control during rampup
- But...
 - poloidal field coils are near current limits
 - Vertical growth rate, \(\gamma \), is near control limit

- Inner Coils in vertical control circuit (VS2) can improve stability
Corsica is Being Benchmarked Using the DIII-D Current Ramp Phase

- Corsica modeling predicts approximate onset time for sawteeth ($q_0 \sim 1$)

- Corsica predicts l_i higher than ITER design values. Both l_i formulations are included:
 - $l_i(1)$ used in DIII-D
 - $l_i(3)$ is ITER l_i approximation
Summary

- DIII-D has simulated the ITER small bore baseline outer wall startup scenario
 - Measured l_i is above the ITER design limit.
- A new large bore startup scenario was developed for ITER
 - Lower l_i and higher q_{min}
- Real time feedback control of l_i has been demonstrated
 - Allows control of the current profile (important for AT scenarios)
- Breakdown in DIII-D always occurs near the inside wall
 - Occurs at or near maximum E_{ϕ}
 - ITER breakdown is assumed to occur further outboard
- ECH and low voltage startup experiments have started
 - Can provide better simulation of ITER startup
- CORSICA benchmarking of DIII-D experiments will allow more accurate predictions of ITER startup
 - ITER coil current and vertical stability are near limits
- Continuing work in 2008 will extend these initial results