Resistive Wall Mode and Plasma Stability at High β and Slow Rotation

by A.M. Garofalo

with G.L. Jackson^{*}, R.J. La Haye^{*}, M.J. Lanctot[#], M. Okabayashi[†], H. Reimerdes¹, E.J. Strait^{*}, R.J. Groebner^{*}, B. Hu[‡], Y. In[¢], W.M. Solomon[†], H. Takahashi[†], and the DIII-D Team

*Columbia University, New York, New York
 *General Atomics, San Diego, California
 *Princeton Plasma Physics Laboratory, Princeton, New Jersey
 *University of Rochester, Rochester, New York, USA
 *FAR-TECH, Inc., San Diego, California

Presented at Forty-Ninth APS Meeting of the Division of Plasma Physics Orlando, Florida

November 12–16, 2007

Outline/Main Results of 2007 DIII-D Experiments

- Observation of RWM stabilization by slow plasma rotation extended to advanced tokamak regime
 - $\beta_N > 4\ell_i, \ q_{min} > 2$
- Reduction of n=1 error field is critical in obtaining stability at low rotation
 - Marginally stable RWM lowers threshold of tolerable error fields in ITER
- Linear kinetic theory predicts stability even below the observed low rotation threshold
 - Observed stability threshold may not be RWM stability threshold
- Magnetic feedback can increase stability against dynamic disturbances, such as large ELMs
 - Feedback quickly restores axisymmetry and avoids locking

RWM Stabilization by Slow Plasma Rotation Observed in Advanced Tokamak Regime

- Threshold rotation for stability observed with:
 - High NBI torque and increased n=1 error field for magnetic braking
 - Low NBI torque and minimized n=1 error field

Stability at low rotation requires optimal correction of n=1 error fields

High rotation thresholds

Resonant Magnetic Perturbations Introduce a Threshold Rotation for Stability

- Threshold V_{crit} depends on unperturbed rotation V₀
 - $V_{crit} = \frac{V_0}{2}$
- Threshold V_{crit} independent of β
- Consistent with "induction motor" model of error field-driven reconnection [Fitzpatrick, *Phys. Plasmas*, 1998]

- Increasing static resonant error field beyond threshold amplitude (-> $V_{\rm crit}$) leads to loss of torque balance, rotation collapse
- Error field (shielded at high rotation) unimpeded from causing magnetic reconnection at low rotation

Magnetic Reconnection at q=2 Surface Observed Below Rotation Threshold

- Controlled braking experiments using n=1 resonant field with slowly increasing amplitude (constant NBI torque)
 - Slowly rotating (10 Hz) to move island past ECE detector

Magnetic Reconnection at q=2 Surface Observed Below Rotation Threshold

- Controlled braking experiments using n=1 resonant field with slowly increasing amplitude (constant NBI torque)
 - Slowly rotating (10 Hz) to move island past ECE detector

Magnetic Reconnection at q=2 Surface Observed Below Rotation Threshold

- Controlled braking experiments using n=1 resonant field with slowly increasing amplitude (constant NBI torque)
 - Slowly rotating (10 Hz) to move island past ECE detector

At High β, Plasma Response Reduces Tolerable Error Field

• Higher $\beta_N (\geq \beta_N^{\text{no-wall}})$, nearly same NBI torque

At High β, Plasma Response Reduces Tolerable Error Field

- Higher β_N ($\geq \beta_N^{\text{no-wall}}$), nearly same NBI torque
- β_N drop occurs at ~1/2 error field amplitude

At High β, Plasma Response Reduces Tolerable Error Field

- Higher $\beta_N (\geq \beta_N^{\text{no-wall}})$, nearly same NBI torque
- β_N drop occurs at ~1/2 error field amplitude
- Marginally stable RWM 30 amplifies error field n=1 B_p amplitude (G) 15 [Reimerdes, JP8.081] Plasma response ~2x 70 35 $\beta_N^{\text{no-wall}}$ V_{Φ} (km/s) (q=2) 0 220 $\beta_{\rm N}$ n=1 l_{coil} 215 R (cm) amplitude (kA) 2.5 210 180 n=1 I_{coil} 205 phase (deg 0 200 -180 2000 2500 3000 2200 2400 2600 Time (ms) Time (ms)

2800

Low rotation thresholds

Kinetic Damping Models Predict Stability Even with Rotation Below the "Small" Experimental Threshold

- Semi-kinetic damping model in MARS-F predicts stability with ~1/2 of experimental rotation threshold
 - Resonance with transit frequency of passing particles, bounce frequency of trapped particles [Bondeson & Chu, *Phys. Plasmas* 1996]

Kinetic Damping Models Predict Stability Even with Rotation Below the "Small" Experimental Threshold

- Semi-kinetic damping model in MARS-F predicts stability with ~1/2 of experimental rotation threshold
 - Resonance with transit frequency of passing particles, bounce frequency of trapped particles [Bondeson & Chu, *Phys. Plasmas* 1996]
- Adding resonance with trapped particle precession drift leads to stability even without rotation [Hu, GP8.116]
 - [Hu&Betti, PRL, 2004]

Tearing Modes and Error Fields Make It Difficult to Test Prediction of RWM Stability Without Rotation

At high β and slow rotation:

- Tearing mode is more unstable
 [Buttery, UI1.003]
 - Tearing mode rotates with plasma before it locks
- Error field threshold for forced reconnection is lower
- Uncertainty on nature of nonrotating limiting instability
 - Could be RWM
 - Could be TM, non-rotating if the plasma rotation is ~zero
 - Could be locked NTM "seeded" by forced reconnection due to residual uncorrected error fields

RWM Feedback Accelerates Damping of *n*=1 Perturbations Following ELMs

- ELMs can couple resonantly to weakly damped RWM [Okabayashi, JP8.082, In, JP8.077]
- RWM feedback mitigates effect of transient perturbations, improves reliability of operation at high β

Summary/Main Results

- RWM stabilization by slow plasma rotation was extended to advanced tokamak regime (Ωτ_A<0.6% at q=2)
 - $\quad \beta_N > 4\ell_i, \; q_{min} > 2$
- Reduction of n=1 error field is critical in obtaining stability at low rotation
 - Marginally stable RWM lowers threshold of tolerable error fields in ITER
- Linear kinetic theory predicts stability even below the observed low rotation threshold
 - Observed stability threshold may not be RWM stability threshold
 - NTM stability, error field-driven "seed" island may be important
- At higher rotation, magnetic feedback can maintain or quickly restore axisymmetry, and sustain stability in high-β regimes
 - Slow feedback routinely used to minimize ~static error field
 - Fast feedback can correct transient perturbations due to ELMs

