Neoclassical Toroidal Viscosity for Low-Density Ohmic Plasmas in DIII-D,* A.J. Cole, C.C. Hegna, J.D. Callen, U. Wisc-Madison; M.J. Schaffer, R.J. La Haye, GA – A recent model [1] for field error penetration that includes resonant and non-resonant perturbed 3D magnetic fields has for the first time obtained quantitative agreement with empirical scaling studies of the error-field penetration threshold with electron density. Relevance of the new model relies on the error-field induced neoclassical toroidal viscosity (NTV) being comparable to cross-field diffusive viscosity near a resonant surface of interest. The strength and harmonic structure of NTV for low-density ohmic plasmas on DIII-D are determined from intrinsic vacuum error-field data. Preliminary analysis has shown that NTV in DIII-D is dominated by non-resonant modes. We neglect the plasma response in this initial investigation. An effective cross-field momentum transport owing to NTV is determined, for future comparison with possible cross-field momentum transport rates in ohmic discharges.


*Supported by US DOE under DE-FG02-92ER54139 and DE-FC02-04ER54698.