Intrinsic Rotation in DIII-D

by

J.S. deGrassie*

for

J.E. Rice,† K.H. Burrell,* R.J. Groebner,* and W.M. Solomon‡

*General Atomics, San Diego, California.
†Massachusetts Institute of Technology, Cambridge, Massachusetts.
‡Princeton Plasma Physics Laboratory, Princeton, New Jersey.

Presented at the 48th APS Annual Meeting of the Division of Plasma Physics Philadelphia, Pennsylvania

October 30 through November 3, 2006
Intrinsic Rotation in DIII-D

Overview

- **Intrinsic rotation** = Toroidal velocity without auxiliary injected torque
 - It is commonly observed.
 - Recognized to be important for issues of stability and confinement in burning plasmas, with little auxiliary torque

- In DIII-D we have investigated intrinsic rotation in H-mode discharges,
 - Using Ohmic Heating (OH), Electron Cyclotron Heating (ECH), and
 - Using the new DIII-D co/counter Neutral Beam Injection (NBI) capability
 - NBI is an important tool to study intrinsic rotation at larger plasma β, but there must be balance in the torque profile

- A scaling for intrinsic rotation is emerging, and an initial DIII-D/C-Mod similarity experiment is encouraging

- Theories presently provide qualitative explanations
 - Neoclassical
 - Turbulence
Toroidal Intrinsic Rotation is Widely Observed In Tokamak Discharges

\[M_\phi = \frac{V_\phi}{\bar{V}_i} \]

\[\bar{V}_i = \sqrt{\frac{T_i}{M_i}} \]

From J.E. Rice, et al, IAEA, EX-P3-12, Chengdu 2006
Ion Velocity and Temperature Measurements in DIII–D
Require NBI: Intrinsic Measurement Limited By NBI Torque

- Only first ~ 2 ms of NBI ‘blip’ is nonperturbative; NBI torque-impulse persists.
- Move time of first NBI blip shot-to-shot to obtain time evolution.
- Long ELM-free period in D⁺ discharges with “spread” and “core” ECH deposition, with evolution of the intrinsic rotation profile.
- We have also utilized ECH H-Modes in bulk ion He²⁺ discharges, measuring the main ion velocity, as well as C⁶⁺
ECH H-modes in DIII-D Exhibit Hollow Intrinsic Rotation Profiles. The Core Rotation Can Be Reversed, to the Counter-Ip Direction

- Relatively flat intrinsic rotation profile also seen in C-Mod EDA H-modes, as in DIII-D OH H-modes.

\[\rho = \text{normalized toroidal flux radial coordinate.} \]
ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

- OH H-mode and “spread” ECH H-mode

![Graph showing C6+ Velocity in Deuterium discharges and ECH deposition profiles.](image)
ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

- OH H-mode and “spread” ECH H-mode
- ECH H-mode with “core” deposition

ECH deposition profiles

C6+ Velocity in Deuterium discharges.

ECH-H (''spread'')

ECH-H ('core')

pECH(a.u.)

"core" (x 1/2) "spread"
ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

- OH H-mode and "spread" ECH H-mode
- ECH H-mode with "core" deposition and "off-axis" deposition
- OH H-modes and "off-axis" ECH H-modes are ELMing.

ECH deposition profiles
Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He++) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He++ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.

ECH-H ('core deposition')

- **\(\omega_\phi\)(krad/sec)**
- **\(\rho\)**

Bulk ion velocity

Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He++) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He++ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.
Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He++) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He++ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.

ECH-H ('core deposition')
Measuring bulk ion and impurity ion velocity allows a test of the standard neoclassical prediction for the bulk ion

- The predicted velocity for He$^{++}$ does not match the measured profile.
- The discrepancy is most likely that the poloidal velocity is not the neoclassical value. [W. Solomon, et al, PoP 13, 056116 (2006)]
- V_{pol} is too small in these intrinsic discharges to measure accurately.

\[\omega \phi(krad/sec)\]

Neoclassical prediction for bulk ion velocity

\[\omega \phi_{NC}(He)\]

\[\omega \phi_{C}(He)\]

\[\omega \phi_{He}\]

Bulk ion velocity

- Intrinsic E field?
Core counter intrinsic rotation develops in time, after L->H
It is not due to an ECH-driven viscosity.

- Diffusive momentum transport alone cannot reproduce the rising counter-Ip rotation.

Averaged over the interior channels, $\rho < 0.25$

- $\bar{n}_e (10^{19}/m^3)$
- $P_{ECH} (MW)$
- $P_{NBI} (MW)$
- $D_\alpha (au)$
- $C^6+ V$elocity in Deuterium discharges.

- $\bar{\omega}_\phi_{core} (krad/sec)$

- $t (msec) = 1500, 2000, 2500$
Such Rotation Profiles Can in Principle Be Generated Without Any Total Injected Torque With Momentum Diffusion and A Pinch.

\[
\frac{\partial L}{\partial t} = \eta + \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(V_{\text{pinch}} L + D \frac{\partial L}{\partial r} \right) \right]
\]

\[L(a) \neq 0 \]

- ECH may cause an interior momentum “rearrangement”?

An example, D = const, U = const

\[V_{\text{pinch}} = \frac{r U}{a} \]
Intrinsic Rotation is Reproducible in the Same Plasma Conditions

- Double ECH H-mode in the same DIII-D shot
- Same intrinsic profile measured

- Plasma resets to ~ Ohmic state in between
 Intrinsic rotation ~ quenched

- Density and temperature profiles reproduce to < 10% at the time of “first NBI blips”
There is a scaling for intrinsic rotation in DIII–D.

- John Rice’s C-Mod intrinsic rotation scaling, $\Delta V_\phi \sim \Delta W/I_p$, is observed in V_{pk} in DIII-D.

Common, co-I_p velocity in this region:

$$V_{pk} = V_\phi(\rho \approx 0.8)$$

Rice scaling

Modified by T_e/T_i

- Fits are done for $V_\phi C^{6+}$ in bulk D

There is A Scaling for Intrinsic Rotation in DIII–D

- John Rice’s C-Mod intrinsic rotation scaling\(^1\), \(\Delta V_\phi \sim \Delta W/I_p\) is observed in \(V_{pk}\) in DIII-D.

Common, co-\(I_p\) velocity in this region

\[V_{pk} = V_\phi (\rho \approx 0.8) \]

Rice scaling

Modified by \(T_e/T_i\)

\[V_{pk}(\text{km/sec}) \]

\[\frac{W}{I_p}(\text{J/A}) \]

\[\frac{[T_e(0)/T_i(0)]W}{I_p}(\text{J/A}) \]

- Fits are done for \(V_\phi\) \(C^6^+\) in bulk D

Data points for \(V_\phi\) \(He^{++}(+)\)
There is a scaling for intrinsic rotation in DIII–D:

- John Rice’s C-Mod intrinsic rotation scaling\(^1\), \(\Delta V_\phi \sim \Delta W/I_p\) is observed in \(V_{pk}\) in DIII-D.

\[V_{pk} = V_\phi(\rho \approx 0.8) \]

Common, co-\(I_p\) velocity in this region

Rice scaling

Modified by \(T_e/T_i\)

- Fits are done for \(V_\phi\) C\(^{6+}\) in bulk D
- Data points for \(V_\phi\) He\(^{++}\) (+) and C\(^{6+}\) (\(\bullet\)) in bulk He fall in line.
This Common Scaling Motivated an Intrinsic Rotation Similarity Experiment Between DIII–D and C-mod

- **Dimensionless parameters**
 \[\hat{\beta} \propto \frac{nT}{B^2} \equiv \hat{\beta} \]
 \[\hat{\nu} \propto \frac{an}{T^2} \equiv \hat{\nu} \]
 \[\hat{\rho} \propto \sqrt{T/aB} \equiv \hat{\rho} \]
 \[q \propto \frac{B}{B_\theta} \equiv q_{95} \]

- **Dimensionless Velocity**
 \[M_\phi = \frac{V_\phi}{\bar{V}_i} \]

- **Match:**
 \[\hat{\beta} \hat{\nu} \hat{\rho} q_{95} \] (absolute parameters)
 shape (\(\varepsilon = \frac{a}{R_0}, \kappa \ldots \))

- **Measure:** \(M_\phi \)

- **DIII-D Target Shot**
 ELMing H-mode; \(\sim \) steady state ("off-axis" ECH H-mode) \(T_e \sim T_i \)

- **Single point \(M_\phi \) comparison, not profile

- **Assumptions required to compare:**

 \[M_{\phi,C-Mod} \]

 \[M_{\phi,PK} \]

 ECH specific

 \[0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0 \]

 \[\rho \]

 DIII-D

 C-Mod
Initial DIII-D/C-Mod Similarity Experiment Shows a Good Match in the Intrinsic M_ϕ

<table>
<thead>
<tr>
<th></th>
<th>DIII-D</th>
<th>C-Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_T(T)</td>
<td>1.75</td>
<td>3.75</td>
</tr>
<tr>
<td>a(m)</td>
<td>0.60</td>
<td>0.22</td>
</tr>
<tr>
<td>ε</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>κ</td>
<td>1.87</td>
<td>1.64</td>
</tr>
<tr>
<td>q_{95}</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>$\hat{\beta}$</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>$\hat{\nu}$</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>$\hat{\rho}$</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>M_ϕ</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>$n_e(10^{19}/m^3)$</td>
<td>5.4</td>
<td>22.</td>
</tr>
<tr>
<td>T(keV)</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>
The Rice Scaling Motivates a Search for a Similarity Path in βq

$$W/I_p \rightarrow nT/B_\theta \rightarrow [^\wedge \beta q_{95}]^{1.25} [\nu, \rho, ..]^\delta$$

Vary q_{95} and β with product constant C-Mod

C-Mod match
$q_{95} = 4.8$
$B_T = 3.75$ T

DIII-D Target
$q_{95} = 6.5$
$q_{95} = 5.1$
$B_T = 5.63$ T

Minority ICRH
(H)D

M_ϕ

βq_{95}
Intrinsic Rotation and NBI Torque: NBI Does Not Quench The Intrinsic Rotation

- Local co-directed velocity persists, with zero volume integrated torque.
- Linear variation of velocity near zero torque indicates NBI impulse is additive.
- We will also look into the details of the torque and momentum profiles.

* Data from Wayne Solomon, CO1.0006
NBI Does Not Quench Intrinsic Rotation: Confinement Time Analysis for Incremental NBI Torque-impulse

- ECH H-mode target; add NBI incremental torque

Intrinsic + NBI, ~ steady

\[\bar{n}_e (10^{19}/m^3) \]
\[P_{\text{ECH}} (\text{MW}) \]
\[P_{\text{NBI}} (\text{MW}) \]

\[D_\alpha \text{ (a.u.)} \]

\[\omega \phi \text{ (krad/sec)} \]
\[\rho \approx 0.15 \]
\[\rho \approx 0.6 \]
NBI Does Not Quench Intrinsic Rotation: Confinement Time Analysis for Incremental NBI Torque-impulse

- ECH H-mode target; add NBI incremental torque

![Graph showing intrinsic + NBI, ~ steady](image)

- Confinement time analysis globally integrated:

![Graph showing time analysis](image)
NBI Does Not Quench Intrinsic Rotation: Confinement
Time Analysis for Incremental NBI Torque-impulse

• ECH H-mode target; add NBI incremental torque

Intrinsic + NBI, ~ steady

- $n_e(10^{19}/m^3)$
- $P_{ECH}(MW)$
- $P_{NBI}(MW)$
- D_α (a.u.)
- ω_ϕ(krad/sec)
- $\rho \approx 0.15$
- $\rho \approx 0.6$

- Confinement time analysis globally integrated:
 - $W_{MHD}(MJ)$
 - $L_{(Nt-m-sec)}$
 - $\Delta L/\Delta W$
 - N/P_{NBI}

- $N = NBI$ torque

response follows source
NBI Does Not Quench Intrinsic Rotation: Confinement Time Analysis for Incremental NBI Torque-impulse

- ECH H-mode target; add NBI incremental torque

Intrinsic + NBI, ~ steady

- Confinement time analysis globally integrated:
 - \(W_{MHD}(MJ) \)
 - \(L(Nt-m-sec) \)
 - \(\Delta L/\Delta W \)
 - \(N/P_{NBI} \)
 - \(N = NBI \) torque

\(\tau_\phi \sim \tau_E \)
NBI Does Not Quench Intrinsic Rotation: Confinement Time Analysis for Incremental NBI Torque-impulse

- ECH H-mode target; add NBI incremental torque

Intrinsic + NBI, ~ steady

- \(P_{ECH}(MW) \)
- \(P_{NBI}(MW) \)
- \(D\alpha \) (a.u.)
- \(n_e(10^{19}/m^3) \)
- \(\omega_\phi \) (krad/sec)
- \(\rho \approx 0.15 \)
- \(\rho \approx 0.6 \)

Confinement time analysis globally integrated:

- \(W_{MHD}(MJ) \)
- \(L(\text{Nt-m-sec}) \)
- \(\Delta L/\Delta W \)
- \(N/P_{NBI} \)
- \(N = \text{NBI torque} \)

\(\tau_\phi \sim \tau_E \) subtracting intrinsic momentum

If no intrinsic response follows source

\(\langle L/N \rangle_t \)

- \(\tau_\phi \)
- \(\tau_E \)
High Power Locally Balanced NBI Reveals Intrinsic Rotation

- Use new DIII-D simultaneous co/counter NBI capability

- The goal will be to push intrinsic rotation scaling to higher β values with high power NBI.

- This shot, no ECH, add counter beam in steps.
High Power Locally Balanced NBI Reveals Intrinsic Rotation

\[\eta (N_t m/m^3) \]
\[10 \times \ell (N_t m-sec/m^3) \]
\[t = 2800 \text{ msec} \]

\[V_\phi (\text{km/sec}) \]
\[M_\phi \]

- \(M_\phi \) profiles
High Power Locally Balanced NBI Reveals Intrinsic Rotation

- **co-phase**
- **near-balanced**

Torque density, $\eta \approx 0$, for $\rho < 0.75$, and $\eta < 0$ outside.

- yet, plasma momentum density, $\ell > 0$, everywhere.

- V_{pk} scaling describes the “intrinsic” value!

- M_ϕ profiles

- W/I_p
- $(T_e/T_i)W/I_p$
Theories predict intrinsic rotation: Extensions to Neoclassical theory

- 2nd order neoclassical theory; off-diagonal elements

- Not yet the complete story, but the predicted pedestal value cannot be ignored

\[
\nu = \frac{R_0 q V_i}{\varepsilon^{3/2} V_i}
\]
Theories predict intrinsic rotation: Turbulence

- Turbulence theories to date provide motivation, qualitative predictions.

 G.M. Staebler, PoP, 11 (2003) toroidal: theoretical framework in which to include turbulence stress

 B. Coppi, IAEA, Lyon (2002)

 J. Thomas and B. Coppi UP1.00072

 P. Nataf and B. Coppi UP1.00073

- As with energy confinement, we will need to measure the turbulence characteristics!
Summary

• Intrinsic rotation exists, independent of ion species. It increases in the co-Ip direction with increased plasma stored energy.

• In ECH H-modes, the details of the core profile, including a transition to counter-Ip rotation, depend upon the ECH power deposition profile.

• Intrinsic rotation is reproducible, with repeated plasma profiles.

• There is a scaling; The Rice scaling is a starting point and now we are searching for the dimensionless result.

• An initial DIII-D/C-Mod similarity experiment is encouraging; much more to do.

• It will be possible to measure intrinsic rotation using near-balanced NBI torque in DIII-D, pushing β_N to 2, and beyond.

• Theories are coming to the point that direct comparison with experiment can be made.