Intrinsic Rotation in DIII-D

by J.S. deGrassie*

for J.E. Rice,[†] K.H. Burrell,* R.J. Groebner,* and W.M . Solomon[‡]

*General Atomics, San Diego, California. [†]Massachusetts Institute of Technology, Cambridge, Massachusetts. [‡]Princeton Plasma Physics Laboratory, Princeton, New Jersey.

Presented at the 48th APS Annual Meeting of the Division of Plasma Physics Philadelphia, Pennsylvania

October 30 through November 3, 2006

Intrinsic Rotation in DIII-D Overview

• Intrinsic rotation = Toroidal velocity without auxiliary injected torque

- It is commonly observed.
- Recognized to be important for issues of stability and confinement in burning plasmas, with little auxiliary torque

• In DIII-D we have investigated intrinsic rotation in H-mode discharges,

- Using Ohmic Heating (OH), Electron Cyclotron Heating (ECH), and
- Using the new DIII-D co/counter Neutral Beam Injection (NBI) capability
- NBI is an important tool to study intrinsic rotation at larger plasma $\beta,$ but there must be balance in the torque profile
- A scaling for intrinsic rotation is emerging, and an initial DIII-D/C-Mod similarity experiment is encouraging
- Theories presently provide qualitative explanations
 - Neoclassical
 - Turbulence

Toroidal Intrinsic Rotation is Widely Observed In Tokamak Discharges

Ion Velocity and Temperature Measurements in DIII–D Require NBI: Intrinsic Measurement Limited By NBI Torque

- Only first ~ 2 ms of NBI 'blip' is nonperturbative; NBI torque-impulse persists.
- Move time of first NBI blip shotto-shot to obtain time evolution.
- Long ELM-free period in D⁺ discharges with "spread" and "core" ECH deposition, with evolution of the intrinsic rotation profile.
- We have also utilized ECH H-Modes in bulk ion He⁺⁺ discharges, measuring the main ion velocity, as well as C⁶⁺

ECH H-modes in DIII–D Exhibit Hollow Intrinsic Rotation Profiles. The Core Rotation Can Be Reversed, to the Counter-Ip Direction

 Relatively flat intrinsic rotation profile also seen in C-Mod EDA H-modes, as in DIII-D OH H-modes.

ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

 OH H-mode and "spread" ECH H-mode

ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

- OH H-mode and "spread" ECH H-mode
- ECH H-mode with "core" deposition

ECH Deposition Profile In ECH H-modes Correlates With the Hollow Intrinsic Rotation Profile

- OH H-mode and "spread" ECH H-mode
- ECH H-mode with "core" deposition and "off-axis" deposition
- OH H-modes and "off-axis" ECH H-modes are ELMing.

ECH deposition profiles

Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He⁺⁺) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He⁺⁺ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.

ECH-H ('core deposition')

Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He⁺⁺) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He⁺⁺ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.

Hollow Intrinsic Rotation Profiles Do Not Depend on Ion Species. Bulk Ion (He⁺⁺) ECH H-mode Profiles Are Also Hollow.

- Bulk ion He⁺⁺ velocity profile is also hollow.
- These discharges are ELMing => ELMs do not preclude hollowness.

Measuring bulk ion and impurity ion velocity allows a test of the standard neoclassical prediction for the bulk ion

- The predicted velocity for He⁺⁺ does not match the measured profile
- The discrepancy is most likely that the poloidal velocity is not the neoclassical value. [W. Solomon, et al, PoP 13, 056116 (2006)]
- V_{pol} is too small in these intrinsic discharges to measure accurately.

• Intrinsic E field?

Core counter intrinsic rotation develops in time, after L->H It is not due to an ECH-driven viscosity.

Such Rotation Profiles Can in Principle Be Generated Without Any Total Injected Torque With Momentum Diffusion and A Pinch.

• L.-G. Eriksson and F. Porcelli, NF 959 (2002).

$$\frac{\partial L}{\partial t} = \eta + \frac{1}{r} \frac{\partial}{\partial r} \left[r \left(V_{pinch} L + D \frac{\partial L}{\partial r} \right) \right]$$
$$L(a) \neq 0$$

• ECH may cause an interior momentum "rearrangement"?

Intrinsic Rotation is Reproducible in the Same Plasma Conditions

There is A Scaling for Intrinsic Rotation in DIII–D

1. J.E. Rice et al, NF 41, p 277 (2001).

There is A Scaling for Intrinsic Rotation in DIII–D

There is A Scaling for Intrinsic Rotation in DIII–D

This Common Scaling Motivated an Intrinsic Rotation Similarity Experiment Between DIII–D and C-mod

- Dimensionless parameters
 - $\beta \propto nT/B^2 \equiv \hat{\beta}$ $v^* \propto an/T^2 \equiv \hat{\gamma}$ $\rho^* \propto \sqrt{T/aB} \equiv \hat{\rho}$ $q \propto B/B_{\theta} \equiv q_{95}$
- Dimensionless Velocity
 - $M_{\phi} = V_{\phi} / \overline{V}_{i}$
- Match:

 $\begin{array}{l} & \wedge & \wedge \\ \beta & \nu & \rho \end{array} \begin{array}{c} (absolute \\ parameters) \end{array} \\ shape (\epsilon = a/R_0, \kappa) \end{array}$

• Measure: M_{ϕ}

ELMing H-mode; ~ *steady state* ("off-axis" ECH H-mode) **T_e ~ T_i**

- Single point M_φ comparison, not profile
- Assumptions required to compare:

Initial DIII-D/C-Mod Similarity Experiment Shows a Good Match in the Intrinsic $M_{\rm D}$

The Rice Scaling Motivates a Search for a Similarity Path in βq

SAN DIEGO

Intrinsic Rotation and NBI Torque: NBI Does Not Quench The Intrinsic Rotation

- Local co-directed velocity persists, with zero volume integrated torque.
- Linear variation of velocity near zero torque indicates NBI impulse is additive.
- We will also look into the details of the torque and momentum profiles.

varied with DIII-D simultaneous co/counter NBI

* Data from Wayne Solomon, CO1.0006

• ECH H-mode target; add NBI incremental torque

• ECH H-mode target; add NBI incremental torque

• Confinement time analysis globally integrated:

• ECH H-mode target; add NBI incremental torque

• Confinement time analysis globally integrated:

• Confinement time analysis globally integrated:

Confinement time analysis

- ECH H-mode target; add NBI incremental torque globally integrated: 118191 E (a) W_{MHD}(MJ) Intrinsic + NBI, ~ steady-0.4 0.2 L(Nt-m-sec) 4 $\bar{n}_{e}(10^{19}/m^3)$ $P_{ECH}(MW) P_{NBI}(MW)$ πΠπΠπ 1.5 2 $\Delta L / \Delta W$ (b) D_{α} response 10 (a.u.) follows <u>Nt-m</u> N/P_{NBI} 0 MW source 0.5 $\omega_{\phi}(\text{krad/sec})$ 0**≅** 0.15 N = NBI torque 40 0.4 if no intrinsic. (c) $\tau_{\phi} \sim \tau_{E}$ <L/N>20 subtracting 0.2 $\rho \cong 0.6$ (sec) intrinsic momentum 0 3000 2500 2000 1500 ١E Time (ms) 0 3000 1500 2000 2500 Time (ms)
 - NATIONAL FUSION FACILITY

High Power Locally Balanced NBI Reveals Intrinsic Rotation

- Use new DIII-D simultaneous co/counter NBI capability
- The goal will be to push intrinsic rotation scaling to higher β values with high power NBI.
- This shot, no ECH, add counter beam in steps.

High Power Locally Balanced NBI Reveals Intrinsic Rotation

—— co-phase

High Power Locally Balanced NBI Reveals Intrinsic Rotation

Theories predict intrinsic rotation: Extensions to Neoclassical theory

 2nd order neoclassical theory; off-diagonal elements

S.K. Wong, V.S. Chan PoP <u>12</u>, 2005.
H.A. Claassen, *et al*, PoP <u>7</u>, 2000.
P.J. Catto and A.N. Simakov, PoP <u>12</u>, 2005.
A.L. Rogister, *et al*, NF <u>42</u>, 2002.

 Not yet the complete story, but the predicted pedestal value cannot be ignored

Theories predict intrinsic rotation: Turbulence

• Turbulence theories to date provide motivation, qualitative predictions.

R.R. Dominguez and G.M. Stae	oler, PF, 11 (1993) slab: ITG, DTE produce intrinsic profiles	different
G.M. Staebler, PoP, 11 (2003)	toroidal: theoretical framework in which to include turbulence stress	
B. Coppi, NF 42, (2002) ITC	modes in outer region. Model diffusion a	nd pinch
B. Coppi, IAEA, Lyon (2002)		
B. Coppi et al, EPS Rome (2006	Edge turbulent mass ejection (blobs)	
J. Thomas and B. Coppi UP1.0	0072	
P.Nataf and B. Coppi UP1.0	0073	

• As with energy confinement, we will need to measure the turbulence characteristics!

Summary

- Intrinsic rotation exists, independent of ion species. It increases in the co-Ip direction with increased plasma stored energy
- In ECH H-modes, the details of the core profile, including a transition to counter-Ip rotation, depend upon the ECH power deposition profile
- Intrinsic rotation is reproducible, with repeated plasma profiles
- There is a scaling; The Rice scaling is a starting point and now we are searching for the dimensionless result
- An initial DIII-D/C-Mod similarity experiment is encouraging; much more to do
- It will be possible to measure intrinsic rotation using near-balanced NBI torque in DIII-D, pushing β_N to 2, and beyond
- Theories are coming to the point that direct comparison with experiment can be made

