Neoclassical Tearing Mode Control With Modulated Electron Cyclotron Current Drive in DIII-D

Presented by A.S. Welander for the DIII-D NTM Control for ITER Thrust General Atomics

48th APS/DPP Meeting Philadelphia, Pennsylvania Oct. 30-Nov. 3, 2006

Test of realtime phase detection (PCS cycle time = 25 μ s)

Neoclassical Tearing Modes Destabilized by Helically Perturbed Bootstrap Current

- Pressure is flattened at O-point, but not at X-point
- ★ thus a helically perturbed bootstrap current reinforces the "seed" ... a destabilizing effect that can lower the plasma magnetic energy

ECCD Can Stabilize Neoclassical Tearing Modes by Replacing Missing Bootstrap Current

$$\frac{\tau_{R}}{r} \frac{dw}{dt} = \Delta_{0}'r + \frac{\delta\Delta'r}{ECD} + a_{2} \frac{j_{bs}}{j_{ll}} \frac{L_{q}}{w} \left[1 - \frac{w_{marg}^{2}}{3w^{2}} - \frac{K_{1}}{j_{bs}} \right] Modified Rutherford Eqn. for stability
ECCD replaces
missing bootstrap current
• for w/\delta_{ec} <<1, modulation is desirable
* as stabilizing cw ECCD on O-point
... nearly cancelled by destabilizing on X-point
* for w/\delta_{ec} >1 the effectiveness is comparable
w/wo modulation
Hegna & Callen 97, Zohm 97, Perkins et al, 97)
(Hegna & Callen 97, Zohm 97, Perkins et al, 97)$$

Deposition aligned to island by:

- Moving plasma (rigid shift, fixed strike points)
- Moving deposition along beam (by changing the toroidal field)
- Moving beam vertically (with steerable mirror)

Deposition aligned to island by:

- Moving plasma (rigid shift, fixed strike points)
- Moving deposition along beam (by changing the toroidal field)
- Moving beam vertically (with steerable mirror)

Deposition aligned to island by:

- Moving plasma (rigid shift, fixed strike points)
- Moving deposition along beam (by changing the toroidal field)
- Moving beam vertically (with steerable mirror)

Moving ECCD along beam

Deposition aligned to island by:

- Moving plasma (rigid shift, fixed strike points)
- Moving deposition along beam (by changing the toroidal field)
- Moving beam vertically (with steerable mirror)

Several Algorithms Implemented to Find and Maintain Island/ECCD Alignment

- "Search and Suppress" algorithm to find optimal alignment systematically before island suppressed
- "Active Tracking" algorithm to maintain qsurface/ECCD alignment after island suppressed

Robust Algorithms Maintain NTM Suppression Under Noisy Conditions

- Mode suppressed by Search and Suppress followed by Active Tracking
- Mode strikes again due to measurement uncertainties
- Alignment recovered with new Search and Suppress followed by Active Tracking

CW ECCD used successfully in experiments

Radial Alignment Methods Implemented in the Control System and Used in Experiments

Modulation More Beneficial When Current Drive Wide

Narrow ECCD

Current deposited mostly inside island
 (O and X points do not cancel)

• Wide ECCD

 More current is deposited outside island
 (O and X points nearly cancel)

Wide ECCD modulated

- Avoids driving current outside island

Narrow ECCD 0.8 0.6 0.4 0.2 Z [m] 0 -0.2 -0.4 -0.6 -0.8 -1 1.5 2 R [m]

Modulation More Beneficial When Current Drive Wide

Narrow ECCD

Current deposited mostly inside island
 (O and X points do not cancel)

• Wide ECCD

 More current is deposited outside island
 (O and X points nearly cancel)

Wide ECCD modulated

- Avoids driving current outside island

Modulation More Beneficial When Current Drive Wide

Narrow ECCD

Current deposited mostly inside island
 (O and X points do not cancel)

Wide ECCD

 More current is deposited outside island
 (O and X points nearly cancel)

Wide ECCD modulated

- Avoids driving current outside island

Modulated ECCD used in ASDEX, M. Maraschek et. al. , EPS Rome 200

Wide ECCD, modulated

Control system upgraded for modulation of ECCD

Control Block Diagram for Modulation

Realtime NTM Phase Identification Using Mirnov Signals

50 One of the Ω **Mirnov signals** -50 -100 3260 3260.2 50 Modulation 0 phase error -50 3260 3260.2 3

Phantom commands in synch with island

- CW ECCD implemented and used successfully in experiments
- Control system upgraded to use modulated ECCD
- Modulated ECCD to be used in 2007 campaign

For more on island diagnostic development refer to poster by Francesco Volpe **GP1.00010** on Tuesday morning

