Decoupling the Effects of Momentum and Power Input From Neutral Beam Injection

by Wayne Solomon,¹

With contributions from K.H. Burrell², A. Nagy¹, J.S. deGrassie², R.-M Hong², S. Scott¹, J.T. Scoville², and M. Peng³

1.Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

2.General Atomics, San Diego, California, USA

3.Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Presented at the 48th APS-DPP, Oct 30, 2006

Motivation for Momentum Confinement Studies

- Rotation in ITER is expected to be much lower than the usual values in today's experiments
- There are many unknowns associated with rotation
 - How exactly does the rotation scale with the momentum input?
 - How well do enhanced confinement regimes hold up at lower rotation?
 - Do we get enough E x B shear at low toroidal rotation to suppress turbulence?
- New counter neutral beam capabilities on DIII-D allow us to begin to address some of these questions

Momentum Transport Was Investigated Ising Advanced Tokamak Plasma Startup

- Elevated q_{min} conditions stay above 1 for ~ 5 s
 - no sawteeth
- Torque scans performed at constant \mathbf{b}_{N}
 - Use plasma control system (PCS) beta feedback control
 - Beta feedback as proxy for T_i
- As vary number of counter sources, PCS adjusts number of co-sources to maintain requested beta level

Momentum Transport Was Investigated Ising Advanced Tokamak Plasma Startup

- Elevated q_{min} conditions stay above 1 for ~ 5 s
 - no sawteeth
- Torque scans performed at constant \mathbf{b}_{N}
 - Use plasma control system (PCS) beta feedback control
 - Beta feedback as proxy for T_i
- As vary number of counter sources, PCS adjusts number of co-sources to maintain requested beta level

Change in Net Torque by Counter NB Mainly Affects Just the Rotation Profile

- Introduction of counter beams reduce rotation by approx factor 4
- Only minor changes to other plasma profiles
- Transport analysis performed with TRANSP

Power Requirements to Maintain Constant \mathbf{b}_{N} Increase With Reduced Torque

- Time record of absorbed beam power vs integrated torque from TRANSP
- Clear increase in power requirements as torque is reduced by introduction of counter beams

Energy Confinement is Degraded with Counter Beams

- Systematic decrease in energy confinement time as torque is reduced by counter beam
- Observations compatible with reduction in E x B shear
- Presumably, at some point, this trend must reverse
 - Reverse I_p plasmas can have good confinement (eg QH-mode)

Momentum Confinement Time Characterized by Simple Model of Angular Momentum

 Momentum confinement time t_f represents decay of angular momentum L.
For momentum source (torque) T:

$$\frac{dL}{dt} = T - \frac{L}{t_f}$$

 If torque comes from neutral beam injection, then in steady state:

$$t_f \sim L/T_{NB}$$

 Ratio of momentum to energy confinement typically found to be ~1 across many machines

J.S. deGrassie et al, Nucl. Fus. **43**, 142 (2003)

Torque Scans Show that Toroidal Velocity Varies Fairly Linearly with Total Integrated Torque

- No obvious variation with **b**_N
- Perhaps a little flattening at large torque
- Rotation not zero with zero torque
 - "Intrinsic rotation"[See deGrassie GI1.00005]

Intrinsic Rotation Profile Can Be Interpolated From the Torque Scan Data

If Intrinsic Rotation is Neglected, Erroneous Momentum Confinement Times are Deduced

 Large intrinsic rotation gives 1/torque dependency to momentum confinement

 $t_f \sim L/T$

- If L doesn't go to zero with T, then t_f blows up
- If *L* positive when *T* negative, get negative t_f

Momentum Confinement Shows Torque Dependence After Accounting for Intrinsic Rotation

- Reanalyze momentum confinement times after subtracting intrinsic rotation
 - Leaves rotation driven by neutral beam torque (incremental momentum confinement)

$$\mathbf{t'_f} \sim \frac{L - L_0}{T_{NBI}}$$

- 1/Torque dependency disappears as expected
- However, residual dependence on torque/rotation remains
 - Momentum confinement degrades with increased torque

- Power requirements to maintain given b_N increase with reduced torque
- Energy confinement is degraded as counter neutral beams introduced / net torque reduced
- Intrinsic rotation needs to be considered for momentum confinement studies
- Momentum confinement degrades with increase to net torque
 - Comparable to degradation in energy confinement with power
 - Momentum confinement time appears insensitive to β_N

H-Factor is Degraded With Counter Beams

 Systematic decrease in H-factor as torque is reduced by counter beam

Power Requirements to Maintain Constant \mathbf{b}_{N} Increase With Reduced Torque

- Time record of injected power vs integrated torque from TRANSP
- Clear increase in power requirements as torque is reduced by introduction of counter beams

- Ratio of momentum confinement time to energy confinement time straight from TRANSP
- Ignores intrinsic rotation

- Ratio drops ~ factor of two at large torque after including intrinsic rotation
- Not obvious variation with torque

Counter Beam Injection Leads to Increases in Electron and Ion Heat Diffusivities

 Transport analysis performed with TRANSP

 Electron and ion heat diffusivities enhanced at reduced torque

Analysis of Energy Confinement Shows Dependence on Rotation

- Analysis of energy confinement time for all shots this year show the same general trend
 - Using central rotation as representation of torque
- On counter rotation side, see similar degradation in confinement as approach zero rotation
- Linear fit to the data show that co-rotation outperfor counter-rotation
- Observations consistent with reduction in ExB shear

