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Intfroduction

« An H-mode based reactor will require high H-mode pedestal pressure

— High n_ "t required for high fusion power

— High TPEP for high energy confinement = Q, with expected stiff T profiles
e ETB low transport = ELMs instabilities driven by high J and dP/dR

— ELMs provide density and impurity conftrol, but can erode plasma
facing surfaces at reactor scale (ELM energy loss o Pogp)

e Two ELM-free regimes on DIII-D, QH-mode and RMP-H-mode, with good
energy confinement, high pedestal pressure, and no density or impurity
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High Pressure Gradient and Current Density in H-

mode Edge Drives Peeling-Ballooning Instability

e p’ driven ballooning mode
" and J driven peeling mode
ELITE Stability main large scale instabilities
OW N PEELING Calculation in ETB
: UNSTABLE ' Modes merge near n=10
; givinglown,n<5, in the J
driven regime and n 2 20 in

the p” driven regime
/”o, ELMs triggered along either
S0, peeling or ballooning
/0
9, > boundary

J is dominated by bootstrap
current (Jgsx p’) and J;/p”
Contours of y/(w./2) decreases with v. moving
Instability at y/(w*/2) = from J drive atlow n, to p”~
drive at intermediate n

Stability limit depends on
plasma shape, collisionality,

Edge Current [(jmax+jsep)/2<j>]

TH.R. Wilson, P.B. Snyder, et al., Phys. Plasmas 9 (2002) 2037. |§
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QH-MODE RESULTS




ELM-free QH-mode With Edge Harmonic Oscillation (EHO)

Has High Energy Confinement and No n_, Accumulation

e Counter injection 207 A) 193818
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QH-mode Operation is Associated With the Edge Being

Near the Low n Peeling Mode Stability Threshold

« The QH-mode edge is always near the peeling mode stability limit where n <5
consistent with the observed n values for the EHO

 Low v.requirement for QH-mode operation suggests Low n peeling instability may
be a necessary condition for QH-mode

 ELMs can occur along either the peeling or ballooning limits = Peeling instability
not a sufficient condition for QH-mode

If the EHO is a peeling mode why does it saturate in QH-mode ¢
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Current ramp experiments also suggest QH-mode is near peeling

limit and EHO is destabilized with J below what is required for ELM

e EHO turns off as |, is ramped down =« ELMs return when I, is ramped up =

EHO is current driven Stability threshold for ELM is at higher
* n,rises with EHO off = EHO is source current than that required for EHO

of n, control; without EHO standard * EHO disappears after ELM, but ELM

ELM free precursor is more complex - higher

n or nonlinear phase
. Ro’ra’rlon rises with EHO off = EHO P
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Discharges Where Only CO-NBI Power Fraction Was Varied Also

Show EHO Occurs Just Below Peeling Stability Threshold for ELM

 Data suggest there may be an additional drive for the peeling-ballooning
instability in QH-mode which is more susceptible to saturation than the current
drive
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Rotational Shear Drive for Modes at Low n Suggests a

Possible Saturation Mechanism for the EHO (P. Snyder)

e Sheared toroidal flow incorporated into ELITE
* Rotational shear is destabilizing at low n and stabilizing at higher n

« For mode driven by Q’, if mode growth reduces Q” this would reduce
the drive and possibly saturation the mode
— Wall drag, or momentum fransport

Along ballooning boundary where Along peeling boundary where

Saturation Requirements

higher n modes dominate at Q" =

low n modes dominate at Q" =

0 access requires high Q° 0 less Q" required .

020 — 1 ¢ Low n = along peeling
G | ~T] boundary
£ 015 - Q' drive at lower Q
< : : — Stronger wall drag
§ 0.0 i : 1+ High rotational shear
< I — Q" drive dominatesj
E 0.05 - . drive

Z | Expected but =351
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CO-NBI Injection Experiment Consistent With

Importance of Rotation in EHO Saturation

ELMs start earlier with increasing CO-NBI
EHO shuts off earlier with increasing CO-NBI

Q" reduced with increasing CO-NBI fraction ~

P’ and J rise to ELM limit through an
increase in n PP and An_FEP
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ELMs Return in Discharge With Large Plasma-wall Gap

Consistent Importance of Wall Drag in EHO Saturation
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Rotational Shear is Also Smaller in the ELMing Discharge

With Smaller Plasma-wall Gap

e Saturation hypothesis for EHO
requires Q" drive and wall
drag (or other) rotational
damping

— Less Q" and likely less wall
drag with large gap
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Access to the Low n Peeling Mode Unstable Regime and

Therefore Also QH-mode is Possible in ITER at Lower n_FEP

- ITER Base Case
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RMP H-MODE RESULTS




RMP Coil Expected to Give Control Over P, by Breaking

Up Magnetic Surfaces in ETB Region

122491

e External n=3 coils create
Resonant Magnetic . - - —«_ — - = L“E o i Ve
Perturbation in ETB, breaking % ,_*‘V i
up magnetic surfaces

M 1, fig i ]
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ELMs are Completely Eliminated With n=3 RMP in ITER

Similar Shapes With ITER Pedestal Collisionalities
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P.ep is Strongly Reduced With RMP but Mainly Due to

Reduction in n_"E? and Width of High Vn_ Region
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RMP Eliminates ELMs by Reducing Edge p’, j
Below Peeling-Ballooning Stability Threshold
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Higher 8 RMP ELM-free Discharges Also Lie Below

PB-mode Threshold But at Lower p’, J

« p’ reduced, but pedestal width increased at h|gh trlangularlty

_ 0.3 - e No AP 5 = 0.63
p” x AV3expected for peeling | A ELMing - No RMP 5 = 0.53

bolloonlng STCIbI|ITy (flxed 6) _ 040l ® RMPELMFree5=053 4 ]
A ELMmg No RMP 8 0 53 | | A
= ® RMP ELM Free 5 =0.53 = 5=0.53
g C
S 0.8 - <

+Jsep

o

&
"

max

-
= : ‘s
.-é' o
7)) -
2 0.6 i
e 0'00 | L 1 1 Il | 1 1 1 1 | 1
c 0.5 1.0 1.5
2 T<PED (keV)
S o 4 A B R B B
o <) ELITE MODELING FOR & = 0.0
2 0.4- = 1
S w
w 2 50 |
9
o oL ~ A03
A
Normalized Pressure Gradient (o) & 5 ‘ | ‘ |
0 2 4 6 8 10

ETB WIDTH (A %)

IONAL FUSION FACINTY
T. Osborne, APS 2006 10/27/06




Maximum P,y With RMP ELM Suppression Did Not

Change Significantly With Triangularity

Increased A offsets reduced P~ at high triangularity
More RMP current needed to suppress ELMs at higher § (Evans C01.00008)
Although P, with RMP < peak P, before ELM, P, with RMP nearly as high
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Profiles at min RMP current for ELM Suppressmn




Energy Confinement Remains Good in RMP ELM

Suppressed Discharges, Somewhat Worse at Higher 9

Reduction in P, at low 3 offset by peaking of n_ profile, increase in T,
and fast ion pressure, and n %41 dependence of ITER98y2 scaling

Differences with 6 related to difference response of Z_; and T,
(Evans C01 00008)
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RMP ELM Suppression Might be Possible for ITER

Older study using 6 segment n=3 coil, like

DIlI-D, placed on outside of ITER vacuum vessel
indicated 140kA would be required to produce
the save island overlap requwed for suppressmn
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Work by M. Bécoulet® indicates currents could
be reduced to 25 kA by mounting inside the
vacuum vessel closer to the plasma

*M. Bécoulet, et al., Modeling of Edge Control by Ergodic Fields in DIII-D,
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Summary, Conclusions

* RMP is an effective ELM suppression and density control technique
applicable at ITER relevant shape, q, and collisionality

— An RMP coil for ITER is difficult but perhaps possible

* A detailed understanding of the plasma response to the RMP is not
complete, but coil acts to reduce edge P’ and J below peeling-
ballooning mode stability threshold suppressing ELMS, while still allowing
the pedestal pressure to stay relatively high

e QH-mode is also an atiractive ELM suppressed regime which requires
operation near the low n peeling stability limit where rotational shear
drive coupled with wall drag may result in the saturated EHO that gives
QH-mode its density control

— Access to the low n peeling unstable regime would be possible in
ITER up to densities of ~ 0.3x1020m?3

— The counter injection requirement for QH-mode is yet to be
understood
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