Edge Stability of Steady-State ELM-Suppressed Regimes on DIII-D

by T.H. Osborne*

for

P.B. Snyder,* K.H. Burrell,* W.P. West,* T.A. Casper,[†] P. Gohil,* C.J. Lasnier,[†] T.E. Evans,* R.A. Moyer,[‡] S.L. Allen,[†] M. Becoulet,[§] I. Joseph,[‡] V. Parail,[¶] M.J. Schaffer,* P. Thomas,[§] L. Zeng,[#] M.E. Fenstermacher,[†] J.A. Boedo,[‡] R.J. Groebner,* A.W. Leonard,* G.D. Porter,[†] D.M. Thomas,* and J.G. Watkins[¶]

*General Atomics, San Diego, California. [†]Lawrence Livermore National Laboratory, Livermore, California. [‡]University of California-San Diego, La Jolla, California. [§]Association Euratom-CEA. [¶]Sandia National Laboratories, Albuquerque, New Mexico. [#]University of California-Los Angeles, Los Angeles, California.

Presented at the 48th Annual Meeting of the Division of Plasma Physics Philadelphia, Pennsylvania

October 30 through November 3, 2006

Introduction

- An H-mode based reactor will require high H-mode pedestal pressure
 - High n_e^{PED} required for high fusion power
 - High T^{PED} for high energy confinement \Rightarrow Q, with expected stiff T profiles
- ETB low transport \Rightarrow ELMs instabilities driven by high J and dP/dR
 - ELMs provide density and impurity control, but can erode plasma facing surfaces at reactor scale (ELM energy loss ∝ P_{PED})
- Two ELM-free regimes on DIII-D, QH-mode and RMP-H-mode, with good energy confinement, high pedestal pressure, and no density or impurity

accumulation

High Pressure Gradient and Current Density in Hmode Edge Drives Peeling-Ballooning Instability

- p´ driven ballooning mode and J driven peeling mode main large scale instabilities in ETB
- Modes merge near n=10 giving low n, n ≤ 5, in the J driven regime and n ≥ 20 in the p´ driven regime
- ELMs triggered along either peeling or ballooning boundary
- J is dominated by bootstrap current $(J_{BS} \propto p')$ and J_{BS}/p' decreases with v_* moving from J drive at low n, to p' drive at intermediate n
- Stability limit depends on plasma shape, collisionality,

¹H.R. Wilson, P.B. Snyder, et al., Phys. Plasmas <u>9</u> (2002) 2037.

3

QH-MODE RESULTS

ELM-free QH-mode With Edge Harmonic Oscillation (EHO) Has High Energy Confinement and Non_e Accumulation

T. Osborne, APS 2006 10/27/06

80

20

ONAL FUSION FACIL

40

Frequency (kHz)

injection

or near ETB, rotating in direction of beam

QH-mode Operation is Associated With the Edge Being Near the Low n Peeling Mode Stability Threshold

- The QH-mode edge is always near the peeling mode stability limit where n \leq 5 consistent with the observed n values for the EHO
- Low v_* requirement for QH-mode operation suggests Low n peeling instability may be a necessary condition for QH-mode
- ELMs can occur along either the peeling or ballooning limits ⇒ Peeling instability not a sufficient condition for QH-mode

10/27/06

Current ramp experiments also suggest QH-mode is near peeling limit and EHO is destabilized with J below what is required for ELM

- EHO turns off as I_P is ramped down ⇒
 EHO is current driven
- n_e rises with EHO off \Rightarrow EHO is source of n_e control; without EHO standard ELM free
- Rotation rises with EHO off \Rightarrow EHO

- ELMs return when I_P is ramped up ⇒
 Stability threshold for ELM is at higher current than that required for EHO
- EHO disappears after ELM, but ELM precursor is more complex – higher n or nonlinear phase

Discharges Where Only CO-NBI Power Fraction Was Varied Also Show EHO Occurs Just Below Peeling Stability Threshold for ELM

 Data suggest there may be an additional drive for the peeling-ballooning instability in QH-mode which is more susceptible to saturation than the current drive

Rotational Shear Drive for Modes at Low n Suggests a Possible Saturation Mechanism for the EHO (P. Snyder)

- Sheared toroidal flow incorporated into ELITE
- Rotational shear is destabilizing at low n and stabilizing at higher n
- For mode driven by Ω' , if mode growth reduces Ω' this would reduce the drive and possibly saturation the mode
 - Wall drag, or momentum transport

10/27/06

CO-NBI Injection Experiment Consistent With Importance of Rotation in EHO Saturation

Total P[']_{Total}

0

0

0

Increasing P_{CO}

ELMing

ELMing

0.9

0.95

 $\Psi_{\scriptscriptstyle N}$

% Before First ELM

Increasing P_{CO}

- **ELMs start earlier with increasing CO-NBI**
- EHO shuts off earlier with increasing CO-NBI
- Ω' reduced with increasing CO-NBI fraction
- P' and J rise to ELM limit through an increase in n_e^{PED} and Δn_e^{PED}

ELMs Return in Discharge With Large Plasma-wall Gap Consistent Importance of Wall Drag in EHO Saturation

Rotational Shear is Also Smaller in the ELMing Discharge With Smaller Plasma-wall Gap

Access to the Low n Peeling Mode Unstable Regime and Therefore Also QH-mode is Possible in ITER at Lower n_e^{PED}

ELITE calculations show ITER could access low n peeling unstable regime with n^{PED} < ~ 0.3x10²⁰m⁻³

 Rotational and wall effects yet to be determined

Normalized Pedestal Pressure Gradient (α)

T. Osborne, APS 2006 10/27/06

RMP H-MODE RESULTS

RMP Coil Expected to Give Control Over P_{PED} by Breaking Up Magnetic Surfaces in ETB Region

- External n=3 coils create <u>R</u>esonant <u>M</u>agnetic <u>P</u>erturbation in ETB, breaking up magnetic surfaces
- Very near the separatrix field lines cross separatrix and intersect vessel wall
- Further from the separatrix a region of stochastic field

0.7

ELMs are Completely Eliminated With n=3 RMP in ITER Similar Shapes With ITER Pedestal Collisionalities

 2006 lower divertor reconfiguration allows collisionality control (pumping) in ITER Similar Shape (ISS)

T. Osborne, APS 2006

10/27/06

P_{PED} is Strongly Reduced With RMP but Mainly Due to Reduction in n_e^{PED} and Width of High ∇n_e Region

- ELMs eliminated only in q window where RMP field is resonant with equilibrium field
- n_e and ∆n_e strongly reduced with RMP
- T_e surprisingly relatively unchanged
- T_i increases (less coupling to electrons)
- Ω´ strongly reduced
- Z_{EFF} increased
- P_{PED} and △P_{PED} strongly reduced

RMP Eliminates ELMs by Reducing Edge p', j Below Peeling-Ballooning Stability Threshold

I-Coil ELM suppressed discharges at low triangularity generally have peeling – ballooning growth rates below stability threshold $(\gamma = \omega_{*e}/2)$

Higher δ RMP ELM-free Discharges Also Lie Below PB-mode Threshold But at Lower p ', J

• p'reduced, but pedestal width increased at high triangularity

Maximum P_{PED} With RMP ELM Suppression Did Not Change Significantly With Triangularity

- Increased Δ offsets reduced P' at high triangularity
- More RMP current needed to suppress ELMs at higher δ (Evans C01.00008)
- Although P_{PED} with RMP < peak P_{PED} before ELM, P_{PED} with RMP nearly as high as P_{PED} averaged over ELMs

Energy Confinement Remains Good in RMP ELM Suppressed Discharges, Somewhat Worse at Higher δ

- Reduction in P_{PED} at low δ offset by peaking of n_e profile, increase in T_i and fast ion pressure, and n_e^{0.41} dependence of ITER98y2 scaling
- Differences with δ related to difference response of Z_{eff} and T_i (Evans CO1.00008)

10/27/06

IAL FUSION FACI

RMP ELM Suppression Might be Possible for ITER

 Older study using 6 segment n=3 coil, like DIII-D, placed on outside of ITER vacuum vessel indicated 140kA would be required to produce the save island overlap required for suppression

 Work by M. Bécoulet^{*} indicates currents could be reduced to 25 kA by mounting inside the vacuum vessel closer to the plasma

10/27/06

T. Osborne, APS 2006

*M. Bécoulet, et al., Modeling of Edge Control by Ergodic Fields in DIII-D, JET, and ITER, IAEA 2006, IT/P1-

Summary, Conclusions

- RMP is an effective ELM suppression and density control technique applicable at ITER relevant shape, q, and collisionality
 - An RMP coil for ITER is difficult but perhaps possible
- A detailed understanding of the plasma response to the RMP is not complete, but coil acts to reduce edge P' and J below peelingballooning mode stability threshold suppressing ELMS, while still allowing the pedestal pressure to stay relatively high
- QH-mode is also an attractive ELM suppressed regime which requires operation near the low n peeling stability limit where rotational shear drive coupled with wall drag may result in the saturated EHO that gives QH-mode its density control
 - Access to the low n peeling unstable regime would be possible in ITER up to densities of ~ $0.3 \times 10^{20} m^{-3}$
 - The counter injection requirement for QH-mode is yet to be understood

