Integrated Scenario Modeling for Steady State and Hybrid Scenario in DIII-D and ITER

By

J.M. Park*,†

In Collaboration with M. Murakami,[†] H.E. St. John,[‡] and the DIII-D Team

*National Fusion Research Center, Dae Jeon, Korea [†]Oak Ridge National Laboratory, Oak Ridge, TN [‡]General Atomics, San Diego, CA

Presented at 48th Annual Meeting American Physical Society Division of Plasma Physics Philadelphia, PA

October 30 – November 3, 2006

Integrated Scenario Modeling Is Applied to DIII-D and ITER

This talk will discuss:

Progress of Integrated Scenario Modeling

- Density evolution using GLF23, fast ion diffusion, parallel computation

Validation of the Modeling Against DIII-D Experiments

- Hybrid and AT discharges

• Application to ITER Prediction Using ITER 'Day-1' H&CD Capabilities

- Hybrid: Demonstration of high fusion performance (Q>10) with extended burning duration (t>5000 s) and $q_0>1$
- Steady-state: Existence of full noninductive scenario at f_{NI}≥100 % and Q≈5 Possibility of better performance with Internal Transport Barrier (ITB)

ONETWO/GLF23 Reproduces Experimental Profiles Reasonably Well for DIII-D Hybrid Discharges

* Experimental data chosen in stationary phase Independent of ELM timing

- Solve (n, Te, Ti, v, J) equations using GLF23 model
- Main ion particle diffusivity
 = GFL23 + neoclassical
 - + background (D=0.2 m²/s)
- Ad-hoc assumed fast ion D_b

ONETWO/GLF23 Reproduces Experimental Profiles Reasonably Well for DIII-D AT Discharges

* Experimental data chosen in stationary phase Independent of ELM timing

- Solve (n, Te, Ti, v, J) equations using GLF23 model
- Main ion particle diffusivity
 = GFL23 + neoclassical
 - + background (D= $0.2 \text{ m}^2/\text{s}$)
- Ad-hoc assumed fast ion D_b

Computational Efficiency of ONETWO/GLF23 Has Been Improved for ITER Simulation by Parallel Computation and GCNM Solver

- Parallelization of ONETWO/GLF23 by Domain Decomposition Method
- Stationary state with fully penetrated current profile by interleaving:
 - Time stepping calculation of all the transport equations for over 100 s
- "One Step Steady State" solution (δ / δt = 0) of J evolution using GCNM (Globally Convergent Newton Method)
 [H.E. St. John, JP1.00130]

High Fusion Performance (Q>10) with Extended Burning Duration (t >5000 s) Can Be Achieved Using ITER 'Day-1' H&CD Capability

$$B_T = 5.3 \text{ T}, I_p = 12 \text{ MA}, P_{NB} = 33 \text{ MW} @ 1 \text{ MeV}, P_{RF} = 20 \text{ MW} @ 56 \text{ MHz}$$

• Low V_{loop} provides extended burning duration • Q \approx 10 with (T_{ped} = 7 keV, N_{GW} = 0.7) or (T_{ped} = 5 keV, N_{GW} = 1.0)

Stationary State with $q_0 > 1$ Is Demonstrated for the ITER Hybrid Scenario

- Stationary state with fully penetrated J profile
- Q = 8, $\beta_{\rm N}$ = 2.3
- $\mathbf{q}_0 \approx$ 1.2, $\mathbf{q}_{min} \approx$ 1.05 using counter FWCD

Existence of Full Noninductive (f_{NI} =100%) Scenario with Q≈5 is Established for the ITER Steady-State Scenario

SAN DIEGO

APS06/jmp/v1.2

ITB Formation is Observed with a Broader Initial Current Profiles Otherwise under the Same Conditions

• Substantially better parameters, though not equilibrated:

	f _{NI} (%)	f _{BS} (%)	Q
Base case	100	69	5.5
ITB	110	73	7.7

 Simulation efforts to sustain the broad current profile using off-axis ECCD for a long period are in progress

Conclusion

- Integrated scenario modeling based on ONETWO/GLF23 has been successfully validated against DIII-D experiments with new modeling capabilities including density profile evolution using GLF23, fast ion diffusion and parallel computation.
- ONETWO/GLF23 simulation for the ITER Hybrid scenario Indicates high fusion performance (Q>10) and extended burning duration (t > 5000 s) can be achieved with q₀>1 using ITER 'Day-1' H&CD capability.
- Existence of full noninductive scenario (f_{NI}≥100%) at Q≈5 Is established for the ITER Steady-State scenario with possibility of better performance by Internal Transport Barrier.

