Characterization of Zonal Flows and Their Dynamics in Experiment and Simulation

by C. Holland¹

with

G.R. Tynan¹, J. H Yu¹, A.N. James¹, M. Shimada¹, D. Nishijima¹, Z. Yan¹, N. Taheri¹, R.J. Fonck², G.R. McKee², D. Gupta², J. Candy³, and R.E. Waltz³

¹ University of California, San Diego, CA
 ² University of Wisconsin-Madison, WI
 ³ General Atomics, San Diego, CA

Presented at 48th Annual Meeting of the Division of Plasma Physics American Physical Society Philadelphia, Pennsylvania

October 30 - November 3, 2006

Overview of Results

- Zero mean frequency (ZMF) zonal flow now observed in core of DIII-D
 - First observation of ZMF in a high-temperature tokamak
 - Transition from ZMF dominated core to Geodesic Acoustic Mode (GAM) dominated edge region documented
- GAM-Driven Cascade of Internal Energy Has Been Measured in Edge of DIII-D
 - First direct measurement of zonal flow driven nonlinear energy transfer in a high-temperature tokamak
 - Simulations of core turbulence indicate that ZMF zonal flows drive a similar cascade
- Generation of a zonal flow via Reynolds stress has been demonstrated in the CSDX experiment at UCSD
- Taken together, results represent experimental validation of key linear and nonlinear aspects of the 'drift-wave - zonal flow' paradigm

Motivation

- Zonal flows now recognized as essential component for understanding driftwave turbulence
- They have received extensive analytic and numerical investigation, but experimental results have lagged until recently
 - Experimental observations of the 'zero mean frequency' zonal flow branch as well as nonlinear interactions between turbulence and zonal flows have been extremely limited
- Upgraded Beam Emission Spectroscopy (BES) system on DIII-D now allows for measurement of turbulence and zonal flows over wide region of plasma
- CSDX experiment at UCSD supports complimentary studies of drift-wave turbulence in a basic laboratory experiment
- Goal: use BES and CSDX to provide necessary experimental support for theory and simulation of drift-wave zonal flow turbulence

Zonal Flows Believed to Provide Dominant Saturation Mechanism for Drift-Wave Turbulence

BES System Configured to Provide Zonal Flow Measurements Over Large Fraction of Plasma

- BES measures localized, long-wavelength ($k_{\perp}\rho_i < 1$) density fluctuations
 - Can be radially scanned shot to shot to measure turbulence profiles
 - Recent upgrades allow for BES to measure core fluctuations (Gupta et al, Rev. Sci. Inst 75 3493 2004)
- Time-delay estimation (TDE) technique uses cross-correlations between two poloidally separated measurements to infer velocity

Measured V_{θ} Spectra Exhibit Signatures of Both ZMF Zonal Flows and GAMs

- Spectra indicate broad, low-frequency structure with zero measurable poloidal phase shift
 - Consistent with low-m (m=0?)
 - Peaks at/near zero frequency
- GAM also clearly observed near 15 kHz
- ZMF zonal flow has radial correlation length comparable to underlying density fluctuations
 - Necessary for effective shearing
 of turbulence

Gupta *et al.*, PRL **97** 125002 (2006)

Observe Transition from ZMF-Dominated Core to GAM-Dominated Edge

- Velocity spectra show broad ZF spectrum for r/a < 0.8
 → ZMF flow
- Superposition of broad spectrum and GAM peak near r/a = 0.85
- GAM dominates for r/a > 0.9
- Consistent with theory/simulation expectations that GAM strength increases with q
 - Increase in GAM strength with q₉₅ also observed (McKee *et al.*, PPCF 2006)
- GAM is highly coherent, with correlation time τ_{GAM}
 > 1 ms and oscillation period 1/f_{GAM} ≈ 55 μs, both larger than turbulence decorrelation time τ_{turb} ~ 10 μs
 - Indicates GAM is "slow" relative to edge turbulence timescales, and so can effectively interact with turbulence (Hahm *et al.*, PoP '99)

GAMs Observed to Peak in Plasma Edge

- GAM velocity oscillation amplitude peaks near r/a ~0.9–0.95
 - Decays near separatrix
 - Decays inboard, still detectable to r/a ~ 0.75
 - Consistent with HIBP measurements on JFT-2M (Ido *et al.*, PPCF 2006)
- ZMF zonal flows not observed for r/a > ~0.9, but do increase towards core
 - Harder to quantify radial dependence because of broad spectral characteristics

GAM Amplitude vs. Minor Radius

McKee et al., PPCF 2006

Measuring Nonlinear Interactions Between Zonal Flows and Turbulence

- Analytic theory and simulation clearly indicate the importance of specific nonlinear interactions between the zonal flows and underlying drift-wave turbulence
 - Zonal flows should shear apart the turbulence, transferring energy to smaller (radial) scales
 - Turbulence in turn generates zonal flows via the Reynolds stress
- Experimental validation of the 'drift-wave zonal flow' paradigm requires measuring these nonlinear interactions, in addition to characterizing the spatio-temporal characteristics of the zonal flows
- Present two measurements that address this issue
 - 1. GAM-driven nonlinear energy transfer in edge of DIII-D
 - 2. Generation of a zonal flow by the Reynolds stress in CSDX

Consider a simple model of density evolution

$$\frac{\partial \tilde{n}}{\partial t} \approx -V_x \frac{dn_0}{dx} - V_x \frac{\partial \tilde{n}}{\partial x} - V_y \frac{\partial \tilde{n}}{\partial y} + D\nabla_{\perp}^2 \tilde{n}$$

 $x = r - r_0$ $y = r_0 \theta$

Consider a simple model of density evolution

Consider a simple model of density evolution

$$T_n^Y(f',f) = -\operatorname{Re}\left\langle n^*(f)V_y(f-f')\frac{\partial n}{\partial y}(f')\right\rangle$$

- $T_n^{Y}(f, f)$ measures the transfer of energy between density fluctuations at f and poloidal density gradient fluctuations at f at a specific spatial location due to poloidal convection
 - A positive value of T_n^{γ} indicates that n(f) is gaining energy from $\partial n/\partial y(f')$
 - A negative value indicates that n(f) is losing energy to $\partial n/\partial y(f)$
- Have all the quantities needed to *experimentally* calculate the portion of $T_n^{\gamma}(f', f)$ associated with GAM convection (with $\delta I \approx n$)
 - 1. $n(r,t) = (n_1 + n_2)/2$
 - 2. $\partial n/\partial y(r,t) = (n_1 n_2)/\Delta y$
 - 3. $V_{y}(r,t)$ from TDE algorithm

• $T_n^{\gamma}(f, f)$ clearly shows that fluctuations at $f = f + f_{GAM}$ gain energy, while those at $f = f - f_{GAM}$ lose energy

$$T_n^Y(f',f) = -\operatorname{Re}\left\langle \tilde{n}^*(f)V_y(f-f')\frac{\partial \tilde{n}}{\partial y}(f')\right\rangle$$

150

100

50

С 0

50

250

200

 Density fluctuations gain energy from lower frequency gradient fluctuations, and lose energy to higher frequency gradient fluctuations

$$T_n^Y(f',f) = -\operatorname{Re}\left\langle \tilde{n}^*(f)V_y(f-f')\frac{\partial \tilde{n}}{\partial y}(f')\right\rangle$$

fluctuations f' (kHz)

- $T_n^{\gamma}(f, f)$ clearly shows that fluctuations at $f = f + f_{GAM}$ gain energy, while those at $f = f - f_{GAM}$ lose energy
- Density fluctuations gain energy from lower frequency gradient fluctuations, and lose energy to higher frequency gradient fluctuations
- Simple picture: energy moves between n, ∂n/∂y to high f in "steps" of f_{GAM}

net transfer of energy to high *f*!

$$T_n^Y(f',f) = -\operatorname{Re}\left\langle \tilde{n}^*(f) V_y(f-f') \frac{\partial \tilde{n}}{\partial y}(f') \right\rangle$$

Poloidal density gradien fluctuations *f* (kHz)

- $T_n^{\gamma}(f, f)$ clearly shows that fluctuations at $f = f + f_{GAM}$ gain energy, while those at $f = f - f_{GAM}$ lose energy
- Density fluctuations gain energy from lower frequency gradient fluctuations, and lose energy to higher frequency gradient fluctuations
- Simple picture: energy moves between *n*, ∂*n*/∂*y* to high *f* in "steps" of *f*_{GAM}
- net transfer of energy to high *f*!
- Demonstrates that the convection of density fluctuations by the GAM leads to a cascade of internal energy to high f

$$T_n^Y(f',f) = -\operatorname{Re}\left\langle \tilde{n}^*(f)V_y(f-f')\frac{\partial \tilde{n}}{\partial y}(f')\right\rangle$$

GAM Convection Leads to Net Energy Transfer From Low to High Frequencies

- Integrating T^Y_n(f, f) over f quantifies net rate at which poloidal convection nonlinear transfers energy into / out of fluctuations with frequency f
- Balances linear growth / damping and nonlinear transfer due to radial convection to determine turbulent spectrum
- Key question: how to clearly connect to shearing mechanism?
 - First step: investigate frequency and wavenumber space transfer in simulation

Studying Energy Transfer in Simulation

- To gain more insight into zonal flows driven energy transfer, use the GYRO code to look at the interactions in more detail
- Use CYCLONE base case parameters (q = 1.4, r d(ln q)/dr = 0.786, R/L_n = 2.22, R/L₁ = 6.92, T_e/T_i = 1)
 - Assumes adiabatic electrons: $\tilde{n}/n_0 = e(\phi \langle \phi \rangle)/T_e$
 - All analysis is done at outboard midplane
 - Long run time (T = 3000 a/C_s) needed for converged statistics
 - Corresponds to core rather than edge turbulence parameters
- Goal is to examine energy transfer in a simple, well-studied model of the turbulence rather than quantitative reproduction of the experimental results
 - CYCLONE parameters represent logical point for this study

Simulation Exhibits Broad Density Spectrum and ZMF Dominated Zonal Flows

- For q = 1.4 (and adiabatic electrons), GAMs are weak feature at ω ~ ± c_s/a and low k_r
- Zonal flow ExB velocity $cE_r/B \propto k_r\phi$, such that GAM contribution to velocity is overwhelmed by higher k_r components
- Density spectrum broad and featureless

Connecting to Wavenumber-Space Energy Transfer

- Experimental results showed a forward cascade in frequency space at a particular spatial location, but would like to make more direct contact with theory which describes transfer between different wavenumbers
- To quantify effects of zonal flow convection on internal energy transfer in GYRO, look at *k*-space resolved energy transfer term $T_n^{ZF}(k_{\theta'}, k_{r'}, k_{r'})$

$$T_n^{ZF}(k_\theta, k_r, k_r') = -\operatorname{Re}\left\langle \tilde{n}^* \vec{V}_{ZF} \cdot \bar{\nabla} \tilde{n} \right\rangle$$

 $\rightarrow T_n^{ZF}(k_\theta, k_r, k_r') = k_\theta(k_r - k_r') \operatorname{Re}\left\langle \tilde{n}^*(k_r, k_\theta) \phi(k_r - k_r', k_\theta = 0) \tilde{n}(k_r', k_\theta) \right\rangle$

- Note that because zonal flows have $k_{\theta} = 0$, they couple density fluctuations with different values of $k_{r'}$ but the same k_{θ}
 - Can either sum over $k_{\theta'}$ or select specific values of k_{θ} to gain insight into how zonal flows affect turbulence on different spatial scales

k-space Energy Transfer Shows Forward Cascade In $|k_r|$, In Agreement with Expectations From Theory

- Fluctuations with |k_r|
 |k_r'| gaining energy, while those with |k_r| < |k_r'/ losing energy
- Corresponds to expectation that radial decorrelation by ZFs leads to transfer of energy to smaller radial scales (higher k_r)
- So what does frequency-space transfer look like?

ZMF Zonal Flows Also Drive Forward Cascade in Frequency Space

- Calculation of $T_n^{Y}(\omega', \omega)$ in GYRO indicates the ZMF zonal flows transfer internal energy to higher frequencies
- Key difference from experiment: transfer now occurs in bands along $\omega = \omega'$ with width set by ZF spectral width, rather than along narrow curves $f = f' + / - f_{GAM}$
- Again, underlying physics picture similar in simulation and experiment, when spectral differences between ZMF modes and GAMs are accounted for

$$T_n^{Y}(\omega',\omega) = -\operatorname{Re}\left\langle \tilde{n}^*(\omega) V_y^{ZF}(\omega-\omega') \frac{\partial \tilde{n}}{\partial y}(\omega') \right\rangle$$

Comparison of Experimental and Simulation Energy Transfer Results Illustrates Similarities

Controlled Shear Decorrelation Experiment (CSDX) at the University of California, San Diego

CSDX Parameters

- Helicon source (m = 0, 1.5 kW, 13.5 MHz)
- n_e = 10¹³ cm⁻³
- $T_e = 3 eV$, $T_i \sim 1 eV$

• B = 980 G

Measuring Zonal Flow Generation in CSDX

- Work at DIII-D focused characterizing zonal flows and how they impact the turbulence
- Complimentary work on CSDX at UCSD on measuring how drift-wave turbulence generates zonal flows via the Reynolds stress
- Multiple diagnostics on CSDX allow us to measure zonal flow velocity and Reynolds stress across machine radius
 - Turbulence clearly identified as collisional drift-waves
- Plan: Demonstrate that experimentally measured flow profile consistent with flow expected from azimuthal momentum balance, given the measured Reynolds stress and reasonable damping profiles

Shear Flow and Associated Flux Suppression Observed in CSDX

Flow Profile Predicted by Force Balance Consistent With Measured Profile

- Observe sheared mean azimuthal flow profile in CSDX with all diagnostics
 - Shear layer at r ~ 3.5 cm; particle flux suppressed at this location

Flow Profile Predicted by Force Balance Consistent With Measured Profile

- Observe sheared mean azimuthal flow profile in CSDX with all diagnostics
 - Shear layer at r ~ 3.5 cm; particle flux suppressed at this location
- Measure Reynolds stress using 4-pt Langmuir probe, and integrate force balance equation
 - Prediction in good agreement with measurements
 - Use reasonable guesses for v_{i-n} and μ_{ii} since radially resolved neutral and ion temperature measurements not available

Flow Profile Predicted by Force Balance Consistent With Measured Profile

- Observe sheared mean azimuthal flow profile in CSDX with all diagnostics
 - Shear layer at r ~ 3.5 cm; particle flux suppressed at this location
- Measure Reynolds stress using 4-pt Langmuir probe, and integrate force balance equation
 - Prediction in good agreement with measurements
 - Use reasonable guesses for v_{i-n} and μ_{ii} since radially resolved neutral and ion temperature measurements not available
- Simple simulation of collisional driftwaves in CSDX geometry in qualitative agreement
 - Used Hasegawa-Wakatani model

Summary of Results

- Zero mean frequency (ZMF) zonal flow now observed in core of DIII-D
 - First observation of ZMF in a high-temperature tokamak
 - Transition from ZMF dominated core (r/a < 0.8) to Geodesic Acoustic Mode (GAM) dominated edge (r/a > 0.8) region documented
- GAM-Driven Cascade of Internal Energy Has Been Measured in Edge of DIII-D
 - First direct measurement of zonal flow driven nonlinear energy transfer in a high-temperature tokamak
 - Simulations of core turbulence indicate that ZMF zonal flows drive a similar cascade
- Generation of a zonal flow via Reynolds stress has been demonstrated in the CSDX experiment at UCSD
- Taken together, results represent experimental validation of key linear and nonlinear aspects of the 'drift-wave - zonal flow' paradigm

Backup slides

Experimentally Measured Spectra Qualitatively Consistent with Gyrokinetic Simulation

- Measured velocity spectra at r/a = 0.88 (top), zonal flow velocity spectrum from GYRO (bottom)
- Simulation used CYCLONE parameters, except q = 3 and kinetic electrons

$$- R/L_n = 2.22, R/L_T = 6.92, T_e/T_i = 1$$

Good Agreement Between Experiment and Simulation Bicoherence and Biphase as Well

Bicoherence in (f',f) vs. (f₁,f₂) Planes; Cross vs. Auto-Bicoherences

• Formulation in (f', f) and (f_1, f_2) planes <u>equivalent</u> $(f = f_3 = f_1 + f_2, f' = f_2)$

 Auto-bicoherence of BES signals (on right) both qualitatively and quantitatively different -> Illustrates danger in using "proxy" bispectra

Integrated Transfer Functions Show Clear Similarities Between Experiment & Simulation, *f* and *k*-space

